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CALCULATION OF ROCKET PERFORMANCE PARAMETERS

BASED ON THE EQUILIBRIUM COMPOSITION OF

THE COMBUSTION PRODUCTS

By Klaus W. Gross

George C. Marshall Space Flight Center

SUMMARY

The theory and development of equations are presented for calcu-

lating the composition of combustion products for frozen and shifting

equilibrium, and a combination of both, based on a chosen temperature

limit. The equilibrium compositions of combustion products are used to

calculate rocket performance parameters based on a one-dimensional flow

model.

Furthermore, a technique is described for determining the maximum

specific impulse for a constant chamber pressure. A procedure is also

included for establishing the optimum chamber pressure and propellant

mixture ratio for use when the thrust level of a specific rocket engine

is uprated.

INTRODUCTION

Theoretical equations are developed for the solution of equilibrium

compositions of combustion products obtained in liquid propellant

rocket motors by minimizing the Gibbs function. Subsequently, the more

important rocket performance parameters can be calculated, such as:

characteristic velocity, specific impulse, thrust coefficient, tempera-

ture, expansion ratio, thrust, flow rate, stochiometric mixture ratio,

molecular weight of the combustion products, isentropic exponent, local

velocity, local speed of sound, specific heats at constant pressure and

volume, specific gas constant of the combustion products, and local

static pressure. The indicated performance parameters can be deter-

mined for desired local static pressures and expansion ratios.

A maximum specific impulse calculation routine for constant chamber

pressure is presented as well as an optimum chamber pressure and mixture

ratio calculation to obtain a desired thrust level. The thermodynamic

properties, entropy, enthalpy and specific heat at a pressure of one

atmosphere are determined from polynomials for a temperature range from

298.15°K to 5000°K.



The calculation procedure is limited as to number of elements

taking part in the combustion and formed combustion compounds. Howeverj

space is provided to include or exchange additional elements and

compounds. The basic program uses only a portion of available computer

storage space. This allows the combination of this procedure with

other programs. Many programs have been written that solve for

equilibrium compositions automatically. This program uses mainly the

approach of Gordan et al. (Ref. i). Howeverj changes have been made_

and additional computation procedures are provided.

Grateful acknowledgement is given Mr. Richard Lewis of General

Electric Company assigned to MSFC Computation Laboratory. Without his

proficiency in mathematics and machine techniques this effort might

well have been far less productive.



CONSERVATIONOFENERGY

Energy exists in various forms, e.g., kinetic energy, potential

energy, electrical energy, chemical energy, heat energy, etc. Experi-

ence has shown that in a closed system the sumof all energies does not

change with time. An addition of heat energy (_Q) to a system can cause

change in all existing energies.

AQ =AU + AW +AEp + AEK + ZAE (i)

The energy differences between state i and 2 per unit mass can be

expressed as follows:

i. Internal energy AU
= UZ - U I

rn

2. Work energy AW = PzVz - PIvI
rn

P is the pressure and v the specific volume

3. Potential energy
AEp

= Z 2 - Z I
m

reads

z is the geodetic height

4. Kinetic energy
AE K Wz z _ wl z

m

m 2g o

w is the flow velocity and g o is the gravitational constant.

Neglecting the other forms of energy, the first law of thermodynamics

qz - ql = Uz - Ul +

Z Z
w z - w I

+ zz - zl + Pzvz - Plvl (2)
2g o

3



CONSTANT ENTHALPY PROCESS

The enthalpy per unit mass(h) is defined as the sum of the internal

energy per unit mass (u), plus the product P • v, the work energy required

to transport the masses. This amount of work, however, no longer exists

in the considered mass, but has been transferred to the surroundings.

With h = u + P v (3)

qz - ql = hz - hi +

wg ? _ w1 g

2g o
+ Zz - zl (4)

The combustion process in a rocket combustion chamber can be assumed

to be adiabatic, which means no heat will be added or taken out of the

system and ql q2 = 0. The injection velocity of the propellants and

also the velocities of the formed combustion products in the combustion

chamber are relatively small and can be neglected. Therefore,

z 2
w 2 - w I

=0

Zg 0

Futhermore, the potential energy difference can be neglected.
For a

comubstion chamber with a flow in the vertical direction, the difference

in height between the inlet and outlet cross sectional areas is small,

and for a horizontal chamber the height differences between the centers

of geometry of the two areas is zero. Therefore,

z z - zl = 0

This leaves only the two enthalpy terms before and after the combustion,

and they are equal,

hl = hz (5)

Ul + Plvl = uz + Pzvz

4



ENTROPY

The entropy change of an ideal gas can be developed from the

second law of thermodynamics,

Tds = dh - vdP (6)

The enthalpy change (dh) can also be expressed by

dh = cp dT

Applying the ideal gas equation

Pv = RT (7)

i

we obtain

dT dP

ds = Cp --_-- - R-_- (8)

Considering an isothermal process with dT = 0 and integrating the

equation yields

Sz - Sl = -R(in Pz " in Pl) (9)

The third law of thermodynamics states: The entropy of matter is

equal to zero tor O°K. Therefore, the entropy represents absolute values

when this point is used as a reference level. Furthermore, if a pressure

reference of one atmosphere is selected, we obtain

Sz - sl = RlnPz

Entropy of a gas per unit mass can now be calculated for a certain

temperature and pressure

= ST° - RlnPs T
(lO)

5



The Gibbs - Dalton law indicates that the entropy of a nonreactive

mixture of ideal gases is equal to the sum of the entropy values of the

individual constituents, considering their quantities present. Since

most thermodynamic tables list the molar entropy of a species, the total

entropy of a mixture can be calculated when the individual mole numbers

of the compounds are known:

s = _ni(sT)i (ii)

i

CONSTANT ENTROPY PROCESS

The expansion of the combustion products through a De Laval

nozzle occurs very rapidly and almost without friction losses or heat

exchange with the surroundings. This is nearly equivalent to a reversible

adiabatic process. Therefore, the total entropy of the gas mixture will

hardly change during the expansion process, and the assumption of a

constant entropy process is justified.

s = Sch
(12)

Knowing the static pressure at a specific location downstream, the proper-

ties of the fluid can be determined if the chamber properties are known.

MAXIMUM WORK AND EQUILIBRIUM

Work can be obtained from a system as long as the pressure and

temperature are not in equilibrium with the surroundings (potential,

kinetic and other energy forms shall be neglected). Considering the

system and the surroundings as a unit that cannot receive or lose heat

6



energy, the whole work energy is supplied by the difference between

internal energy before{U')and after(U")the change of state. The internal

energies of the unit before and after the process are composed of the

internal energies of the system and the surrounding,

U' = U 1 + U01

U,, = U z + U02

where the subscript zero (o) indicates the surrounding.

Considering that the pressure and temperature of the surrounding

do not vary, then the surroundings change from the initial to the final

state by a constant pressure and constant temperature process. At the

same time, however, the volume of the system changes, and the work done on

the surroundings at constant pressure amounts to

Po(V1 - V2)

Furthermore heat energy (Qo = To&So) is transferred to the surrounding

without changing its temperature To . The change of internal energy in

the surrounding amounts to

Uo2 - Uol = ToZ2_So + Po(V 2 - Vl)

where &S o = S02 S°i indicates the entropy change of the surrounding.

The total entropy change equals

z_S0 + S z Si > 0

7



The work that can be obtained from this unit is

W_ Ul+ Um- (Uz+ UoJ

W < U_ - U z + (Uol - Uoz)

W < U 1 - U z - ToAS o+ Po(V1 - Vz)

If the process is completely reversiblej the maximum work will be

obtained

Wrnax = UI - Uz - T o(S 1 - Sz) + Po(V 1 - Vz ) (13)

Using the following definitions for enthalpy

H=U+PV (14)

and the Gibbs function

G : H - TS (15)

the work equation reduces to Wma x = H 1 - H z - T0(S I - Sz)

Wma x : G 1 - G z (16)

This equation states an important fact: During such a process, only the

change of (G) can be converted into work energy while the amount

T O (SI - S 2) is carried away as heat.

When the state of a system approaches equilibrium, the maximum

work gradually diminishes and is finally zero.

Wmax = 0 = AG (at equilibrium}

8



For a close_ system undergoing a chemical reactionj an equilibrium state

is achieved when the su_nation of the Gibb's functions for all present

compounds equals zero.

EQUILIBRIUM CONSTANT

The Gibbs function, or free energy function, is the basis for the

equilibrium therory. The differentiated Gibbs function yields

dG = dH - SdT - TdS (17)

or
dG = dU + PdV + VdP - SdT - TdS

In a reversible process, with only expansion work involved, the first

law of thermodynamics yields

dQ = TdS = dU + PdV

Substituting dU in the prior equation gives

dG = VdP - SdT

For an isothermal process.dT = 0 and the equation reduces to

dG = V dP

With the ideal gas law

we find

PV = n RT

n RT
dG-

P
dP

The integration between two states results in

or on a mole basis

G z - G 1 = nRT In P__!z
P1

_z - _1 = RT lnp_

(18)

(19)



This equation can be interpreted as: The maximum work that can be

obtained in a reversible constant temperature process, going from one

state with a pressure PI to a second state with pressure P=, is equal to

the Gibbs function difference.

Assuming that the Gibbs function (G ° ) at one atmosphere and all

temperatures are known, the Gibbs function at any other pressure is

G = G O + RT in P (20)

Formerly it was believed that the reactants in a thermochemical reaction

were completely consumed to form the products. But developments in

chemistry have shown that the reactants never disappear. After initiation

of the reaction, the concentration of the reactants decreases while the

concentration of the formed products increases correspondingly until

equilibrium is reached. Guldberg and Waage stated a relationship between

the concentrations and reaction rates: The rate of reaction is

proportional to the active concentration of the constituents.

Consider the following chemical reaction

aA + bB_cC + dD

where A and B are the reactants, C and D the products, and a, b, c, d

the corresponding mole numbers. After starting the reaction, more and

more products will be formed from the continuously decreasing reactants.

During this process the Gibbs function of each species will change

= _0 + RT in P

10



. until a condition is reached in which the same amount of products are

formed from the reactants as reactants are formed from the products.

This is the equilibrium condition. It was established earlier that no

work can be produced from a system when it is in equilibrium with it's

surroundings. In the above reaction, the surrounding of the reactants

is all the products. Therefore, the difference between the Gibbs function

of the products and the reactants must be zero at this condition.

AG = 0 = cG C + dG D - (aG A + b GB)

Applying equation 20 yields

b, 1

0 = c-Gc ° + d_D ° - (a_A ° + b_B °) + RT(lnPc c + InPD d - ln PA a - ln PB "

Expressing

£_G ° = c GC° + d GD ° - a GA ° b GB °

results in (21)

0 = _._&G° + RT in

d
PC c PD

PA a PB b

In this equation the following expression is called the equilibrium

constant.

Kp =

PC c pD d

PA a PB b

Since the Gibbs function

is independent of pressure and dependent only on temperature. However,

this does not necessarily mean that the concentrations of the reacting

components remain the same when the pressure is increased. Since the

chosen standard condition for the pressure was one atmosphere, the

equilibrium constant Kp is dependent on the units for pressure. The

subscript P has been chosen to indicate this.

(22)

G is a function of temperature only, Kp

Ii



Pressure has an influence on the chemical equilibrium only when a

reaction Occurs with a change in mole numbers or when the gases at

high pressures cannot be considered ideal. Le Chatelier and Braun dis-

covered the principle: If a factor influencing the equilibrium changes,

an effect is produced that tends to reduce the action caused by the

change.

CONDENSED PHASES

A pure substance is defined as having an invariable chemical

composition for all states of aggregation: solid, liquid and vapor.

Single-phase or multiple-phase conditions are considered to be in an

equilibrium state. A p_re substance will have, in general_ the follow-

ing pressure-temperature and temperature-entropy diagrams (Ref. FIG. I

and 2).

P |I 1 Liquid Phase

Critical Point

|Solid \ 0_¥_

Oa.
I S/ rip  Point

FIGURE i. GENERAL PRESSURE-

Tm_PERAn_E DIAGRAM FOR -
DIFFERENT STATES OF AGGREGATION

\ \ Liquid i Vapor Phase

\Solid-\ Phase _

\ \

S°lidk V Tr£ple .u_.n,_ NL

Phas V

I Solid-Vapor Phase

FIGURE 2. GENERAL TEMPERATURE-

ENTROPY DIAGRAM FOR DIFFERENT

STATES OF AGGREGATION
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During a melting (fusion), sublimation and vaporization process,

the corresponding two-phase conditions are in equilibrium: solid-liquid,

solid-vapor, liquid-vapor. All three states of aggregation are possible

only at the triple point.

In this report condensed and gaseous compounds are treated in-

dependently, and are expressed by the application of separate equilib-

rium equations. The vapor pressure is associated with the gaseous

compound only and is zero for the condensed phase. Therefore, the

vapor-condensed phase equilibrium is included in this procedure. Solid-

liquid equilibrium states are treated in Reference 2.

A reversible isothermal constant pressure process converting

liquid into vapor can be performed at the equilibrium pressure. The

entropy change during the vaporization is

LkT-Iva_

_Svap - T

The change in the Gibbs function is zero because

AGva p =AHva p - T ASva p = 0

This can be generalized for any kind of transition between two phases

of a pure substance, such as solid-vapor or solid-liquid. A pure

substance is assumed to keep the same thermodynamic properties despite

the presence of the same matter in another state of aggregation or

another substance.

As shown in equation 18, the Gibbs function for a reversible

isothermal process is

dG : V dP

13



Performing a vaporization process of a substance, the change in the

Gibbs Function is Pl

_Gvap =7f_VdP = f (Vvap - Vl) dP

Pvap

The volume of a liquid can usually be neglected when compared with the

volume of the vapor. If, furthermore, the vapor behaves like an ideal

gas, the equation reduces to

=fAG Vva p dP = n_____T dP = n-RT in Pvap

For a unit mole, the equation reduces to

_ __ PI
AG = RTIn- (23)

Pvap

In equilibrium, the Gibbs function equals zero. This is only

possible when the pressure of the liquid is the same as the vapor pressure

PI = Pvap = Pequ

Neglecting any effect of the applied pressure on the vapor, which is

compatible with the assumption that V F is negligible, and treating the

vapor like a pure substance, the vapor pressure remains a function of

temperature only. The Gibbs function changes to

AG---va p = - -RT In Pequ (24)

Comparison with equation 23 shows that the equilibrium constant is

equal to the vapor pressure. The pressure of the condensed phase has no

effect on the equilibrium constant.

14



Example:
Hz 0(!)_ Hz @(vap) T = 298 °K

AGva p = - RTInKp = -RTlnPequ

_G _ - T_ _ AS
inKp = -__-----= __ - __--+ -_-

RT RT RT R

\ RT H z 0

nva p Sva p - n! S!

R H 2 0

_H = 10520 cal mole, is the latent heat

_S = 28.393 cal mole OK

= 1.987
cal

mole UK

10520 28.393

in Kp = - 1.987 x 298 + 1.98------7

Kp = 0.03125 atm

This result is equal to the vapor pressure at T = 298°K.

SPECIFIC HEAT AT CONSTANT PRESSURE

The specific heat at constant pressure is defined as the amount

of heat added to a specified amount of matter to increase the tempera-

ture by one degree while the pressure is kept constant.

AQ
Cp = _-_

Expressing AQ by the first law of thermodyamics

AQ = AU + P AV

yields

_U + P AV

Cp - AT

Applying the definition of enthalpy

we obtain

AH =AU + PAV

(25)

15



SPECIFIC GAS CONSTANT

The equation of state for an ideal gas is

Pv = RT

At constant temperature and pressure, one mole of two different gases

may be described as

PvlMI = M1R1T

PvzM z =M z R z T

Avogadro's law states that the mole volumina (v.M) of different gases

are the same when the temperatures and pressures are equal.

vl M1 = Vz Mz (26)

or

n

M1R1 = MzRz = MR = R (27)

is called the universal gas constant.

For a mixture of ideal gases enclosed in a volume (V), the total

pressure is equal to the summation of the partial pressures of all

constituents when the temperature is homogeneous.

Ptot = _ Pi
i

(28)

Replacing the pressures by the corresponding term of the general gas

equation, the specific gas constant of the mixture can be calculated.

Mtot Rtot T Mi Ri T

V -_ V
i

Rtot =

E. M i Ri
l

Mtot

(29)

16



Since the mass is equal to the product of the mole number and the

molecular weight,

m = nlVl (30)

the specific gas constant can also be determined without knowing the

specific gas constant of each constituent.

niMiRi

Rtot = I
mtot

R = M i R i (31)

_. ni _ n i

Rtot =_ 1 =_. i
mtot ni Mi

If a condensed phase is existent, its share is only considered in the

total mass, not in the total mole number, because we neglected the

volume as previously indicated.

DALTON 'S LAW

Dalton's law states that the total pressure of a gas mixture is

composed of the partial pressure of the individual components.

Ptot = ._Pi
1

Hereby, a gaseous constituent fills the whole volume and behaves as if

the other gases were not present. When the temperature of all the

gases is the same,

P:V = rr_IRxT

Pz V = m z R z T

or

Since the mass equals the mole number times the molecular weight,

17



we obtain

m =nM

PI nl M1 R1

Pz nz Mz Rz

Using the relationship between the specific gas constant and the

universal gas constant

R=MR

P1 nl

Pz nz

or

P n

Ptot ntot

The pressures can also be expressed by the general gas equation

nRT
P =--

V

Defining the concentration to be

we obtain

n

e - w

V

P = c RT (32)

This relationship can be used to express the equilibrium constants by

concentrations or mole numbers.
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HEATOFFORMATION

Whena compoundis formed from reactants, the heat liberated or

induced is called heat of formation and represents an enthalpy change

during the reaction.

Mostly, thermodynamicprocesses occur in fixed nonreactive gas

mixtures. In this case, use can be madeof the existing thermodynamic

property tables for the given substances, since only changes in state

of these substances must be considered. The enthalpy tables are based

on a reference level that is arbitrary since only enthalpy changes are

significant.

Whena chemical reaction takes place, this concept is not adequate.

Compoundsmaychange or new ones maybe formed from the reactants. When

an energy balance is madebetween the reactants and reaction products, a

commonreference level has to be established. Since reactants and

reaction products are composedof the sameelements, the enthalpy

reference level for the elements is arbitrarily chosen to be zero at

standard conditions (i arm pressure and 298.15°K). The enthalpy of

formation determines the enthalpy level of a specific compoundat

standard conditions with respect to the chosen reference level. If the

heat of formations are summedfor the reactants and products separately,

their difference indicates howmuchenergy is liberated or has to be

induced during a chemical reaction.

In case of a combustion reaction, the energy difference is

available to heat the combustion products from standard conditions to

a higher temperature.
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STOCHIOMETRY

By definition a stochiometric mixture ratio corresponds to complete

combustion, the formation of saturated molecules in the combustion

product. A method to solve this problem is based on the principles of

oxidation and reduction.

Definitions:

Oxidation occurs when electrons are lost.

Reductio n occurs when electrons are gained.

The loss of electrons is represented by a postive valence; the

gain of electrons is represented by a negative valence. The valence,

therefore, determines the degree of combining power of an element or a

radical.

General rules (Ref. 7 and 8)

i. Free elements have no valences.

2. Hydrogen in combination always has a positive valence.

3. Oxygen in combination has two negative valences.

4. The sum of the valences in any compound equals zero.

In an oxidation-reduction reaction, the total increase of positive

valences equals the total increase in negative valences.

Example: Formation of water

H z + ½ ez-- H z e

including the valences

I _.Hz+Z e-zHz ° + _ Oz°
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In this reaction, all compounds have a total valence of zero; however,

in H20 , the valence of hydrogen is (+2) and the valence for oxygen is

(-2). Hydrogen, therefore, has encountered a loss of electrons (oxi-

dation), and oxygen, an increase of electrons (reduction).

The atoms of the various elements differ in their combining capaci-

ties and, therefore, have different valences. To determine the stochio-

metric mixture ratio for a combustion process from the reactants, it is

assumed that in all formed compounds, the elements possess a valence

that is the most common.

element valence

C +4

F -i

H +i

HE 0

N 0

O -2

If a reaction takes place between oxygen and hydrogen and the

products formed possess the most common valences of these two elements,

we can transfer the valences to the reactants, because all products are

composed of the reactants.

v F v 0

LI%F + C_o -_ Products

v = valence

= atomic number of an element in the fuel

= atomic number of an element in the oxidizer

M= molecular weight
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_F

In one gram of hydrogen there are VF _FF valences.

In one gram of oxygen there are valences.

Since the valences of oxidizer and fuel in a stochiometric com-

bustion must be equal, we can form a ratio of the two values, including

a proportionality factor, so that this ratio equals one.

Vo¢oMF

1 = -(ve-_FMo) " qbs

The minus sign makes the ratio independent of the sign.

Solving for the stochimetric mixture ratio (_s), we obtain

vF[FMe
4Ps=

- ve[0M F

When each reactant is composed of more elements, as in C2H2, the equation

must read:

_s

(_ _i ¢i) F MO
= - 1 (33)

(.E vj _j)oMF
J

If one of the propellants is a mixture of two or more compounds, as

0 2 + F2, the summation of the parenthetical terms must consider the

percentage quantities of each compound.
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COMBUSTION AND EXPANSION PROCESS IN A ROCKET ENGINE

Most liquid propellant rocket engines use two propellants, a fuel

and an oxidizer. Each propellant, is forced into the combustion

chamber by a pump or by a high-pressure system. Nozzle walls consist of

many small tubes brazed together, and are regeneratively cooled by one

of the propellants, recovering most of the transferred heat energy and

feeding it back into the combustion chamber. Another important device,

the injector plate, consists of a series of small orifices that mix the

fuel and oxidizer in the forward end of the combustion chamber. The

quality of mixing influences the space occupied by the combustion re-

action and, therefore, is important in determining combustion chamber

length. Combustion stability is also affected by the quality of the

mixture.

Cryogenic propellants usually are injected at the boiling point,

unless one of the propellants is a mixture (for example with the

oxidizer liquid fluorine - liquid oxygen, the injection temperature is

the fluorine boiling point and the liquid oxygen is undercooled).

Storable propellants are normally injected at ambient temperatures.

The isenthalpic reaction of the fuel and oxidizer liberates heat

and produces combustion products that dissociate and recombine. When

the mean composition of these products stabilizes (that is, the rates of

recombination and dissociation are equal),& state of equilibrium is reached.

The potential energy of the combustion products is isentropically con-

verted into kinetic energy when expanded through the nozzle. A choked

condition develops at the throat when the following equation is satisfied:
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Pt(Z) _-1Pch _ + 1 (34)

At this point, the velocity of the gas particles equals the local speed

of sound. Since this velocity can only exist in the throat area, the

mass flowrate can be calculated.

The combustion of the reactants does not occur instantaneously in

a specified area in the-combustion chamber but rather in some portion of

the chamber. During this period, the quantity of gases formed progresses;

this naturally requires an increase in velocity. The velocity increase

calls for a drop in static pressure according to Bernoulli's equation

for compressible flow (Ref. 9).

Pst - Poe = Woo z _ + -- (35)

(The equation is only valid in the range of Ma = 0 to Ma = 0.9)

The continuing combustion, therefore, releases energy at constantly

falling pressure levels. The total energy released during the reaction

is a fixed value, but the availability of this energy varies. The com-

bustion occurring in a finite length causes a pressure loss and an in-

crease in entropy.

With rising temperatures, the reaction rates of dissociation and

recombination increase. Therefore, at high temperatures a change of

state of a system reaches equilibrium quickly; however, at low tempera-

tures more time is needed to reach equilibrium.
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During the expansion process, the combustion products change

state continuously. Whenthe reaction rates are so fast that a chemical

and thermal equilibrium is maintained at any point, the condition is that

of shifting equilibrium. If the reaction rates are slow, freezing

almost any dis&ociation or recombination during the expansion process,

the condition is frozen equilibrium.

THEORETICALCOMBUSTIONANDEXPANSIONMODEL

The following assumptions are made:

i. Propellants are injected at boiling conditions or at ambient

temperature. Injection velocity is negligible.

2. Combustion occurs instantly in an isenthalpic process at

combustion chamberend stagnation pressure and a predetermined mixture

ratio.

3. The expansion process is isentropic and follows either frozen

or shifting equilibrium conditions by minimizing the Gibbs function.

4. All gases behaveaccording to the ideal gas law.

5. Condensedphases and the corresponding gas phase possess

the vapor pressure.

6. The occupied volume of a condensedphase is negligible.

7. No heat £ransfer occurs through the nozzle wall.

8. Thermodynamicand performance parameters are uniform in a

cross-sectional area of the nozzle.

9. The velocity of the gas and condensed products are the same

and are parallel to the nozzle axis (one dimensional).
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i0. No boundary layer influence is considered.

ii. The performance parameters are a function of expansion ratio,

but are independent of nozzle wall contour.

12. There is no jet separation from the wall towards the nozzle

exit.

DEVELOPMENTOFTHEEQUATIONSUSEDIN THE
COM_US!IO._A_ID EXPANSION CALCULATION

In a combustion process at constant pressure, compounds formed

from the reactants can be represented by the following equation

NF (ZaF YbF XcF ...) + N0(ZaOYb0Xc0 .. o) =

100 I10

E ni(ZaiYbiXci "'') + E ni(ZaiYbiXci o.') +

i=l i=101

115

(36)

ni (Zai Ybi Xci • • • )

i=111

where

100

E
i=l

ni(ZaiYbiXci o..) represent the gaseous compounds

llO

E
i = 101

115

E
i=lll

ni(ZaiYbiXci °'')represent the gaseous elements

ni(ZaiYbiXci "''}represent the condensed products

All equations involve the mole numbers and the partial pressures.

To simplify the problem, the chemical reaction equation is multiplied
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by a factor (A), which makes both the mole number and the partial

pressure of each compound numerically equal.

A[NF (ZaF YbF XcF o..) + N0(ZaOYb0Xc0 ...)] =

I00 If0

Ni (Zai Ybi Xci ... ) +
i=l i=lOl

115

Ni(ZaiYbiXci .-.) + E

• i= Ill

A n i = N i

The equilibrium state can be determined by the

io

atoms.

(3"7)

Ni (Zai Ybi Xci •.. )

Chemical equilibrium equations

Consider that each reaction product

following equations.

is formed from gaseous

a iZ + biY + ciX = ZaiYbiXci

The equilibrium condition for these reactions follows from equation 21

_-Gi = _'Gi ° +-RT(lnP i - ailnPz- bilnPy -cilnPx - ...) (38)

_G. must equal zero at equilibrium.
I

equilibrium, _G i will be a small number 6 i so that

6i \_T/i + lnPi - ailnPz - bilnPy - cilnPx - "'"

For condensed products, the in Pi terms are zero because

no influence on the equilibrium constants.

6i = - ailnPz - bilnPy - cilnPx - ...
i

For any other condition close to

(39)

they have

(40)
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2. Massbalance equations

The total mass does not change in a reaction; also, the

massesof the individual elements stay the same.

115
1

ato t = _ _ aiN i
1=1

115
1

btot =_ _ biNi
1=1

(41)

115
1

Ctot =_ E ciNi
i=I

These masses must be equal to the masses of the elements in the

reactants.

3. Pressure equation

In a constant pressure reaction, the total pressure remains

the same. Due to Dalton's law, the summation of the partial pressures

of all compounds in the reaction product must be equal to this pressure

ii0

P = _ Pi (42)

i= 1

4. Constant enthalpy equation.

As was mentioned in the section "Equilibrium Constant", the

enthalpy of the reactants must equal the enthalpy of the combustion

products. The enthalpy of reactants is equal to the heat of formation

plus the heat energy required to go from the reference level to the

injection conditions.
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T T

HO = E (H'f + I _-pOdT)FNF + E (_f + I -_pOdT)@Ne (43)

F Tref @ Tref

The enthalpy of the combustion products is equal to the sum of the

individual enthalpies of the formed compounds.

i

H =K .E(HT °)iNi
1

(44)

Note: HT °The heat of formation is already included in the terms.

5. Constant entropy equation.

The entropy of the combustion products is given by the

following equation as developed in the section "Entropy".

For gaseous compounds

I -- --

ST =K _ [(ST°)i- RinPi]Ni
1

For condensed products

1 --

ST = K E (ST°)iN i
i

(45)

(46)

To determine the equilibrium condition for the combustion process

at constant pressure, the equilibrium, mass balance, pressure, and

enthalpy equations must be solved simultaneously. During the expansion

process, the same equations are considered to determine equilibrium

conditions except the enthalpy equation is replaced by the entropy equation.
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Both sets of simultaneous equations are non-linear. The Newton-Raphson

method is applied to obtain a solution using a finite difference

approximation to the total differential.

NEWTON-RAPHSON METHOD

Consider two nonlinear simultaneous equations in x and y in the

following form

F I = F l(x, y) = 0

F 2 = F z(x, y) = 0

When _ and _ are the solutions there exists a difference for any

other estimate of x i and Y i so that

F 1(x, y) - F 1(xi, Yi) = zXFI _ 0

F z(x, y) - F z(x i, Yi) = _z _ 0

The definition of the difference is arbitrary (as far as signs are

concerned), but when it is once established, the proper correction

equations must be set up.

The total differentials of the given functions are

8FI dx + 8FI dy
dF1 = 8---x- O---y-

dF z = 8Fz dx + 8F__! dy
8x 8y

Going to finite differences, the equations change to

(47)
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These equations are linear in_x and_y whennumerically solved at the

point xiand Yi' Becauseof the transition from the total differential

to the finite difference form, the equations are only approximate.

Therefore, the correction variables are

xi + 1 = xi + _x

Yi + I = Yi + /_Y

(48)

xi + 1 and Yi + 1 approaching _ and _.

Using the following mathematical concept

dlnx i
m

dx x

or in finite difference form

Z_ inx 1

£%x -- x

_x __ x_Inx (49)

the total differentials can be rewritten.

_I \-_-x/xAlnx + \-_y/yAlny
(50)

ZXF z = / xAlnx + yAlny

According to these equations, the set of nonlinear simultaneous

equations is transformed into a set of linear simultaneous equations.

The corresponding correction equations are

lnx i+ 1 = lnx i + Alnx

lnYi+ 1 = lnYi + Alny

(51)
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This procedure is used to solve for the equilibrium condition in the

combustion and expansion process.

RESULTOFEQUATIONSLINEARIZEDBYTHENEWTON-RAPHSONMETHOD

The final equations, as used in the equilibrium calculation

solving for Ni = Pi' T, A, are presented below. A matrix can be

constructed as shownon page 34 (FIG. 3). The equations are derived in

Appendix B.

Equilibrium equation for gaseous compounds

\ RT /i

Equilibrium equation for condensed phases

AF = - aiAlnPz - biAlnPy - ciAlnPx - ...

Mass balance equations

Aln T (53)

115 115
I " 1

_a - - X Z aiNi AlnA + X Z aiNi _InNi
I=I i=I

(54)

Total pressure equation

110

_Fp = _. PiAlnPi
i=l

(55)

(52)
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Enthalpy equation
115 115

1 1
ZkFH= _ _ _ {HT°}iN i_InA + _ E

i=l i=l
115

+ T E (_p°)iNiAlnT
i=l

Entropy equation

(HT°) iN iAln N i

a) for gaseous products

ii0
1

_S = -_ .E [(ST°)i- RInPi]NiAInA
I=I

+ (ST°)iNiAlnNi- E RNi InPiAlnNi

i=l i=l

ll0 _ 1 ii0- E RNiAInP + _ E (_P°)iNif_inT

i=l i=l

b) for condensed phases

115 115

_i__ I
S = A E (STO)i N i £_inA + _ E

i=lll i=lll

(ST °)iNi Aln N i

115
1

+ _ . E (Cp°)iN iz_In T
I=111

(56)

(57)

(58)

Combining both equations yields

1 ['115 ii0

= [ __ (ST°)iNiAlnNi - E RNilnPi_InNi -AFs _ i i i=l

115
1

i=1

1 [I15 _

(_pO)iN i Aln T - _[i --_I (ST°)i Ni -

110 i]E RNi _InP

i=I

110E RNiln P
i-1

1 (gT°)i _ K(lnP i + 1 NiAlnPi+ X E

Z_'S = X[_i= 1 i= 1 i= 1

_ (ST°)i Ni - -R Ni in P

i=l i=l

Aln A

inA

(_p°)i N i Aln T
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DERIVATION OF THE MOLAR SPECIFIC HEAT AT CONSTANT PRESSURE

By definition:

AdH = NCpdT

A dH
N dT = Cp

(59)

The total enthalpy of the product is equal to the summation of the

proper enthalpy portions of the compounds.

115
1

H =_ _ (HT°)iNi
I=i

(6O)

The enthalpy is a function of:

-- 0
H = F(A, N, H T } (61)

At first, the enthalpy equation is differentiated with respect to T in

order to obtain an expression for the Cpequation.

i. In the case of shifting equilibrium, we obtain:

dE = 8H dNi + 8H 8H
8N-_x _ d (HT°)i + _-_ dA

The individual partial derivatives are

-_iS-_i= i=l (HT)iN =_ x_l'=(HT)i

8H 8 1 1 _ 1 _
(HT°)iN = Xi 18(_T°)i = 8(_T°}i i= I

Ni

= - (HT °) i Ni
= _ i=l (HT°)iN _/ i = 1
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Substituting the proper terms and dividing by dT yields.

1 115 1 1_.5 1 115
dH =_ ._ {HT°)idN i +X ._ Nid(HT°)i - A-_ Z (HT°)iNi dA

I=1 i=1 i=l

dH 1 115 dNi 1 11'5 d(HT°)i 1 115 dA

• a-_ = E- _ _T°)i -_ + K _ Ni aT X_ _ (gT°)iNi _-_
• • .

1=1 1=1 1=1

According to £he mathematical concept

d inx 1

dx x

and with

we obtain:

d(HT°}i d [["_ o T) ('_pO)idT = d'TkJ P d i =

115 1 115 dlnA
dH = 1 ,.,Y .._NT°_iNi dlnNi + 1 11Sd-Y X. T d h_ T X .'-' __.--p°.iNi - EY _'-" __.NT°.iNi d in T

1=1 1=1 i=1

dE 1 _115 dlnN i if If dlnA 1= [ _ (HT°)iNi d'-_n_ + T <_P°)iNi - (HT°)iNi dTn--T2-_ A-Y i 1 i=I i=i

The molar specific heat at constant pressure is now

_P- I15 d-T - 1 Z (HT°)iNi d-_nT + T _ (_p°) iN i

Z Ni T E Ni i=l i=l

i=l i=l

115 dlnA 1- E (HT°)iNidlnT
i=l

Since N i Pi, the term d in N i d in Pi= - can be replaced by the
d in T d in T

corresponding expression obtained from the equilibrium equation 52.
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+ + + +.-.
0

RT /i

din Py
dlnPi = ai dlnPz + bi + ci
dlnT dlnT dlnT

The molar specific heat at constant pressure finally results in

_ _5 I dlnPy dlnPx
1 dlnP_ + bi + ci + ..

-- 1 (HT°)iNi ai dlnT dlnT dlnT "
Cp = 115 _i= 1

T _ N i

i=l

(62)

115 115 }
(_T0h 115 dlnNi+ T Z (_P°)iNi Z -- 0 dlnA- (HT)iNi dlnT• + _ (HT°)i Ni -d In T
-/\ "RT i iL-111 i=l i=l

2. For frozen equilibrium Ni and A, are no longer functions of

temperature. Therefore, equation 62 reduces to

_p = 11_ T (_p°)i N i

T i _ Ni i= 1

i=1

115
-- 0

_. (Cp)i Ni
l'=

_p = 1
ll5

Ni
i=l

(63)

DERIVATION OF THE MOLAR SPECIFIC HEAT AT CONSTANT VOLUME

Applying equations 156 and 157

following equation for Cv

38

C v = Cp_

to equation 118 in Appendix B yields the
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Take the difference of the specific heats from equations 156 and 157

[<0s>CP - Cv= T 8-_ P _ v
(65)

The derivatives are calculated from the property equations:

Combining both equations 140 and 141 yields

8s _ 8s 8s dv - _ dP
dT _-_ p 8-_ = 8_v T T

Comparing this with equation 65 shows

_ (0s)av_(0s)d_-_-(Cp- Cv)= 8_v T 8-P T (66)

Applying equations 144, 146, 147, 149, 152, 153, results in

(_) • (_v)a_T_ 8P dv+ Cp- Cv _ pdT = Cp C v v

Comparison of the coefficients with equations 142 yields

(_)_

(_/v-_-__v(_/_

Both equations have the same result

Cp - C v = T "_ P v
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Substituting (8___)v from equation 118 gives

(67)

In the following section expressions are developed for /_\8T_-)P
\ /

(a-_-v) with the equation of state for an ideal gasStarting
T"

MPv = RT

and

taking the logarithm, forming the differential, and dividing by dlnT

yields

I

dlnM dln P dlnv dln R dln T

dIn-----_ + dln-----_ +, dlnT dlnT + dln-----_

Since

dlnR
---0
dlnT

dlnT
-I

din T

It follows that for a constant pressure process

dlnv ldlnM_

T"p/ = 1 -din

or

v[= I
p

dlnM]

dlnT p

(68)
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Beginning again with the general gas equation, taking the logarithm,

forming the differential, and dividing by dln P yields

D

d In M d in P d in v d In R d in T
--+--+ _ +--
d in P d in P dln P d in P d in P

with d in

dln P
--=0

d InP
-I

dlnP

For a constant temperature process

(dlnv _ 1 (d In M_

_T_n_']T = _ -\_n_-]T\

or

v[dlnM= --- 1 +-----_]T P d in T (69)

Solving equation 67 for C v and substituting equations 68 and 69 for the

corresponding terms results in

d in M] z

Changing over to molar specific heats according to

C v = MC v

Cp = MCp

and using equation 70, we finally obtain

(70)

(71)

d In __[] z
1 -7_n p

_v=_P -R [1 + _7_n_ T

(72)
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RESULTSOFEQUATIONSLINEARIZEDBYTHENEWTON-RAPHSONMETHODTO SOLVE
FORTHEPARTIALDERIVATIVESAT CONSTANTPRESSUREANDTEMPERATURE

As shownin Appendix A, the equation of state can be expressed by

F = F(P, v, T) = 0

-I = k-8-_]p\-_-vj T _ v

Since any other property can be expressed by the three properties, P, v,

T, any other partial derivative can be expressed by the three partial

de riva tive s.

In this report, the following first partial derivatives are used

\Ti7 Y]p

dlnP] T

This leads to the determination of the specific heat at "constant pressure

Cp and constant volume Cv; These terms can be expressed by the quantities

8 InPzh

8"7n'-T /p'

_TnYJp

8 in Py_

' "8"'i-n'T / p '

(8 lnPy)81nA T '

8 in PX_"8"l-n'-T '/p' "'"

81nA ]T' "'"

To solve for the partial derivatives, a set of equations must be

solved simultaneously. The soultions of the equations, which are

derived in Appendix C, are given below:

i. The derivatives at constant pressure can be obtained from the

following equations:
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a. Equilibrium equation for gaseous compounds

/ _H___ dlnP z dlnPy dlnPxd in Pi ai bi c i
0 = -_]RT /i + dlnT dlnT dlnT dlnT

(73)

b. Equilibrium equations for condensed phases

l
0= \ ii

dlnPz bi dlnPy ci dlnPx
dln T dlnT dln T

(74)

0 " --

c. Mass balance equation

115 dlnN i
115 dlnA + Z aiNi
Z aiNi dln-----_ dlnT

i=l i=l

(75)

d. Total pressure equation

Ii0
dlnP i

0 = _ Pi dln T
i=l

(76)

This simultaneous set of equations can be simplified when the equilibrium

equations for gaseous compounds is solved for d in Pi and the result is
d in T

substituted in the mass balance equation for d in Ni
d in T

This yields

115 dlnA ii0 Fa dlnPz
0 = - _ a iN i d_nY + _ aiNi i _nT + biLI 1 i 1

d in Py

dlnT

dlnPx + ... +
+ ci dlnT

RT /iJ i=l dlnT

(77)

In writing a coefficient matrix for these equations, using equations

77, 74, 76, the system is incorporated in the reduced augmented matrix

solving for the mole numbers.

2. The derivatives at constant temperature can be obtained form

the following equations:
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a. Equilibrium equations for gaseouscompounds

d In Py d In PX (78)
d in Pi d In PZ bi ci . ..0 = dln-----_- ai dlnA dlnA dlnA

b. Equilibrium equations for condensed phases

0 = - ai dlnPz bi dlnPy _ ci dlnP x (79)
dlnA dlnA dlnA

c. Mass balance equations

115

0 = - ao A + _ aiNi dlnPi (80)
d lnA

i=l

This simultaneous set of equations can be simplified by replacing

the term d In Pi with the proper expression from the equilibrium
In A

equation. The result is

110 ai I ai dlnPz_£_ dlnPYdlnA ci dlnPXd_£_ "'']
0 = - aoA + _ N i + b i + +

i=l

115
d in Pi

+ _ ai Ni
d inA

i=l

(81)

The coefficient matrix for this simultaneous set, using equations 79,

81, is also incorporated in the reduced matrix.

The relationship between (_ in _) and (_ in _) is derived in
in p in T

Appendix D.

ISENTROPIC EXPONENT

Speed of sound is by definition

(82)
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Using the adiabatic relationship for a perfect gas,

pv _ = P _ = const (83)

taking the logarithm

In P-_Inp= const

and forming the differential yields

dlnP - _dlfip = 0

d In P p dP

= dlnp Pdp

With the relationship

I
p= --

V

we obtain

Inp= in 1 - in v inl=O

d Inp= - d In v

dp dv

p v

such that

d P
Setting both terms for Y equal to each other and solving for --

dp

yields

dP P v dP

dp p P dv

(84)

Substituting this in equation 82 gives
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The specific heat ratio is by definition

Cp

_ = C--_

from equation 64, it follows that

Cp = 8v 8P_ (_)_(_)s
Applying equation 69 results in

vr _o_1ro_'_
" = - _ tl + _"_n._-jT\'_- v /s

with [ d1-e]_?= I + din T _s

This

ing

expression appears in the equation for the speed of sound.

a(--_-v )s by equation 64 results in

_-F _ 1_s--_L_v(_)_°v
Considering furthermore equations 67, 68, 69 gives

(86)

Replac-

vii< >]<>]8v z 8P 8v

Ns = -P Cp+ T -_ P _--v T -_ T

Ns = - P Cpv dlnM]' T_ "z dinM _

- 7- _nT- pI+ _T_n_JT + 7

Applying the general gas equation and going over to molar specific heats

finally yields

Cp

[ dln_1[ dln_]7s _p 1 + d_-P'JT - _ 1 "d_nY p

(87)
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THERMODYNAMICPROPERTIES

The thermodynamecproperties per mole of the individual combustion

products used in the calculation'procedure are the specific heat at
-o

-o and the entropy These-o the enthalpy HT ST"constant pressure Cp,

properties are correlated by the following definitions:

_po = F(T)

_T 0 =f_p0 dT

When the Cpvalues are represented by the following polynomial

_p0 = a + bT + cT z + dT 3 + eT 4 (88)

in which a, b, c, d, e are constant values, the enthalpy and entropy

equations yield correspondingly

_T o b T z c T3 d T4 e TS (89)= aT +_ +_ +_ + g + const

_T 0 c T z d T 3 e T4= aInT + bT + _ + _ + _ + const
(90)

The enthalpy function must include the reference enthalpy H°Z98.15 at

298.15 K. In most cases, the properties are tabulated as a function of

temperature at atmospheric pressure. To minimize the errors that show

up if each polynomial is developed individually, all three polynomia%s
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are developed simultaneously by the least-squares method. This is

advantageousbecause all corresponding coefficients have the samevalue,

and it saves storage space in a computer. Onepolynomial does not cover

the total range from 300 to 5000°Kwith sufficient accuracy; therefore,

two ranges were considered, one from 300 to 1000GK,and another from

i000 to 5000°K. In this case, however, a constraint must be placed on

the development of the polynomials so that at 1000°K the intersection

point of the two corresponding polynomials have the samevalue (but not

the sametangent).

The equations in the calculation procedures use the properties
-- 0 -- 0 -- 0
Cp ST HT

R R RT

and the polynomials were developed as

_pO
--- A + BT + CT z + DT 3 + NT 4

R
(91)

-- 0

-A+ + +--+ +-_
RT

(92)

R
(93)

The polynomial coefficients A, B, C, D, E, F, for various compounds and

elements have been published in Ref. 3.
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THROAT AREA CONDITION

Knowledge of flow and thermodynamic properties of the combustion

products in the throat area is necessary to determine performance para-

meters for a rocket engine; for example, characteristic velocity, flow

rate, expansion ratio, thrust, etc. The approach to compute the throat

condition is iterative and is based on the criterion that the flow

velocity is equal to the speed of sound

_v=v_ s

(94)
Ma- w -i

w S

With known chamber data, a first approximation of pressure in the throat

region can be made according to the thermodynamic equation derived for

ideal gases and constant isentropic exponent.

2 x£-1Pt = Pch '_/s + 1 (95)

The corresponding temperatur°e is

[ ]2

Tt - Tch _/s + 1 (96)

The velocity and the speed of sound must be calcuIated for this condition

considering a constant .entropy expansion process, If the results do not

satisfy the criterion w = ws a new approximation of the pressure will be

performed using the following concept.

Every thermodynamic property can be determined when two other properties

are known.
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Choosing

which reduces to

h = F(P, s)

a = F(P)

for a constant entropy process. From experience it is kno_ that there

is a logarithmic relationship between the pressure and the enthalpy.

Differentiating with respect to in P results in

dh= 8 s

or considering finite differences

Ah= 81nP s

During an tsentropic process the total energy cannot change, However,

as long as the proper static pressure in the throat area has not been

found, the difference between the chamber enthalpy and the total enthalpy

for the throat region is not zero.

Ah=hch-h

Applying the mathematical relationship

AP Pk+l-Pk
AlnP =--=

P Pk

with k indicating the previous calculation of the static pressure, we

obtain

Solving for Pk+l

Oh _ Pk+, - Pkhch - h = 8_nP]s Pk

yields

Pk+l = Pkll + hch-h]8(8_____np)s

(97)
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The total enthalpy in the nozzle is composedof a

portion h = hstat + hdyn (98)

w2
h = hstat +--

2g 0

Multiplying and dividing the dynamic term by Ws 2 and the molecular

weight gives

static and a dynamic

Ma z Ws z M
h = hstat +

2g0M

Expressing the speed of sound w s by the following thermodynamic relation-

ship

w s =Jg0_ s RT

results in

Ma z __

h = hstat + -_ _s RT

This equation must be differentiated with respect to In P to adapt it to

equation 97.

( 8h)8__np, =IOhstat) MaZ 8( (M)I
s \'8_nP s + _ YsR\ 81np/s (99)

Considering the Mach-number and the specific heat ratio as independent

of the pressure, the derivative of the dynamic term is derived. From

the ideal gas law the following expressions are developed

PvM = RT

1
V ----

P
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@[ °°] 1a i P - P_ 1 Pap
s='_L ap/s = _ s = _-"pp F _-_/s

Applying equation 84

results in

(0_n_)8 In s _(s

s Re

Next_ the static enthalpy derivative is determined.

thermodynamics states :

hstat = u + Pv

(8hstat _ 1

_P Is =-F

The first

or

Substituting the corresponding terms into equation 99 yields

8in-nP s = I +_ (Ys - I) _-

Applying the ideal gas law yields

PM --
--=RT
P

( ) [ ]8h RT z

O_n'P s =-M -- 1 + _'-_a {Ys- 1)

At the throat area, the Math-number equals one.

equation reduces to

( )-8h RT

s = z--_(Ys- i)

law of
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With this expression, the following approximations for the static

pressure at the throat area can be made.

Pk+1 = Pk i + _ ] (103)

RT[y + IJZM s

EXIT AREA CONDITION

To determine the condition at a given expansion ratio c , the

computation is similar to that used for the throat condition. At first,

a proper static pressure must be estimated for the expansion ratio

being investigated. An equation from Ref. 4 serves as a basis for con-

sidering the flow of an ideal gas through an isentropic nozzle.

(104)

Since the exit static pressure cannot be determined implicity from this

equation, the following procedure was applied:

P

i. For any combination of the pressure ratios _cch = 0. i; 0.01;

0.001; 0.0001; 0.00001, and specific heat ratios Ys= i.i0,

1.15, 1.20, 1.25, 1.30, 1.35, 1.40, the expansion ratio was

calculated.

P A

2. Plotting the data p_ versus _ for constant specific heat

ratios on log- graph paper indicates a fairly linear relation-

ship.
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q_

Expa_slo_ Ratio ( [- ]

1

.

FIGURE 5. PRESSURE RATIO VERSUS EXPANSION RATIO

' FOR CONSTANT SPECIFIC HEAT RATIOS I

A range of 3 to i00 for the expansion ratio of all specific

heat ratios" (¥s) was taken into account.

Because of the linear relationship of a constant specific

heat ratio curve, an equation of the following straight line

equation can be written for each case.

Y_/s : mXys + b

54

or if log-scales are used

/ p \

¢ = Pc) _ '_
(ln_ P ) L In m )I "-_)Z (ln-' J + inc

_s



.

.

o

The slope of each constant Y-line can be calculated from the

end points.

Knowing the slope and considering one point on the correspond-

ing Ys-line, the term in c can be computed.

Plotting the different slopes (m) and constants (in c) as a

function of the specific heat ratios (Ys), a linear relation-

ship was again found so that a straight line equation could

be written for either case.

mYsl.- rays z (y s - ysl)
m - mys I = Ysl " Ysz

in - In

inc - ln cys 1 = CYsl CYsz (Ys - Ysl )
Ysl Ysz

8. A general equation can be developed that represents the family

of curves

or

y = m(Ys)X + b(y s)

-my _)
In_ p [(mYsl (ys - Ysl)

Peh=h\ s + mxsll ln_

(In __ " (Ys - Ysl )
- in CYsz _C_s1

+ In Cysll

( mYsl - mTs_h (_s - _Sl)

P = elk _sl _sz /
Pch

[( ln cYsl - in 7Ysz._

+L\ _s, _sz l(xS-
Ysl) + inCYsi]

(105)
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FIGURE6. SLOPEOFCONSTANT7s LINESVERSUSSPECIFICHEATRATIO
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FIGURE7. ORDINATESECTIONOF CONSTANT7s LINES
VERSUS SPECIFIC HEAT RATIO
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9. Using real values from Figures 5, 6, 7, the equation reads

p - [(0"867_s + 0"27165) In_t + (0.699228y s + 0.442199)] (106)
_ := e

Pch

i0. From this equation an approximation of the static pressure

(P) at a desired expansion ratio can be made.

With the approximation of the static pressure in the exit

area, the desired expansion ratio (e) will not be obtained

the first time. Consecutive approximations of the static

pressure can be calculated from the generally developed

equation 97 by introduction of an expansion ratio relationship.

The total enthalpy does not change during the expansion process,

and equation 98 can be expressed by the expansion ratio (e).

Since the mass flow rate through the throat section is equal to

the mass flow rate through every other cross sectional area, the follow-

ing equations result:

AtPtw t = Apw (107)

A
E ----_ ---_L_

A t w p

_= Pt

wt P
£

Expressing furthermore the speed of sound in the throat area by

Ys, tRtTtWS --- 0

equation 98 finally yields

h = hstat + P_s, tRtTt

2Ez pZ

(lO8)
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, Applying this result to equation 98 yields the partial derivative

shown below :

= _,_'_/
(lO9)

According to equation i00 we obtain

Furthermore

s=p\_ ]_ 2p op zp _p z 1rip= Z_/_= - -6r = - _ = - 7 V_ - p'-_s s s

Using the general gas equation, we obtain

( ) [ ptzYs' tRT ]8h = RT 1 - pZYsRtTt Eza_e s
(110)

Substituting the proper terms in equation 97 finally results in

Pk + * = Pk

/ PC RZ TZ Ysa t/3

hch- khstat + pZ Rt T t zez,,,',] /

\ t tYs / A

(111)

MAXIMUM SPECIFIC IMPULSE

Optimum rocket engine performance is achieved when the mixture

ratio provides the maximum specific impulse. The theoretical perform-

ance calculation in this report includes an option to determine optimum

mixture ratio for a constant combustion chamber pressure. The

following computation procedure is used. Initially, a mixture ratio

is assumed, and the corresponding specific impulse is determined. The
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mixture ratio is then increased twice by a chosen increment, and the

Pertinent specific impulse values are calculated. These three points

in an Isp - _- diagram are the basis for the extrapolation routine

explained below.

The specific impulse as a function of mixture ratio for a constant

chamber pressure can be represented by an equation

I = F(_)
sp Pch

Isp

Predlcted Point

PECIFIC IMPULSE AS A FUNCTION

F MIXTURE RATIO FOR CONSTANT

CHAMBER PRESSURE

P

i _ FIGURE 9. FIRST DERIVATIVE OF SPECIFIC

IMPULSE AS A FUNCTION OF MIXTURE

RATIO VERSUS MIXTURE RATIO

FIGURE i0. SECOND DERIVATIVE VERSUS MIXTURE

RATIO AS A FUNCTION OF MIXTURE

RATIO
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Based on the knownthree points, a meanslope can be determined between

two points

ml = Ispl - IsPz

m z = Ispz - Isp _

which also holds true for the mean mixture ratios

Xl = Z

_z + _3

XZ = 2

The terrns _I and _2 can be understood as the first derivative of the

original function. A second derivative can be developed by taking into

account the change of the slopes

at a mean mixture ratio of

y = xl + x 2
Z

Since the specific impulse as a function of mixture ratio is represented

by a curve that resembles an inverse parabola, the first derivative

can be assumed to have a constant slope. Therefore, the equation of

a straight line for the first derivative yields:

m-mz-m1"m (x-xz)
X I - X Z
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Considering the second derivative, this equation changes to

- _nz= _I (x - Xz)

'The condition for the maximum specific impulse requires

r_n=O

leaving

-_nz= _l (x,-Xz)

The three originally calculated points are used to compute m2' ml,

_nd x2. A new approximation for the mixture ratio _ can be obtained

by solving the latter equation for x.

mlxz - _nz (112)-
X = I_1

At the point of maximum specific impulse, a secant changes into a tangent;

the difference between two consecutive x-values approaches zero, or

This approach exactly determines the maximum for a_ parebolic curve

when three points are known. Since the Isp-N curve is not an exact

parabola, the predicted maximum is not identical with the real one.

However, with every new calculation point a new set of three points

is available to predict a new and better point. This approach physically

moves an inverse parabola along the line Isp = F (_) for a constant
Pch
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chamberpressure until its maximumconverges into the real maximum.

In the calculation procedure presented in Appendix G, it is assumed

that a maximumspecific impulse is obtained when

tan_ = Ispl- Ispz _ 0.01

To avoid any point of inversion, the mixture ratio determined for the

maximum specific impulse is changed by _= 0.001 to the other side

of the maximum to determine whether the specific impulse in this

location is smaller than the Previous one.

THRUST LEVEL UPRATING

When the thrust of an engine is uprated without changing its

geometry, the new operating parameters, mixture ratio and chamber

pressure, can be calculated in a separate option using the calculation

program described in Appendix G.

The thrust increase can be invoked by changing the chamber pres-

sure without varying the mixture ratio. In this case a new chamber

pressure can be determined under the assumption that the chamber

pressure is directly proportional to the thrust

Pch;; = FDes

Pchl FI
(113)
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The thrust value (F=) (calculated using the program) belonging to

the new chamber pressure (Pch2) must be compared with the desired

thrust (FDes). If both values do not fall within a certain

extablished tolerance, a new chamber pressure(Pch ) will be determined2

by applying a straight line extrapolation.

Pchz = Pchz + Pchz - PchlFz FI (Fme s _ Fz ) (114)

This procedure must be repeated until the desired thrust value

is obtained (within a certain tolerance).

Figure ii indicates that lines for constant chamber pressure,

representing the relationship between specific impulse and mixture

ratio, show a shift in maximum specific impulses to higher mixture

ratios with increasing chamber pressure.

Isp

/ Line of Maximum Specific Impulse

/

ch
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For uprated engines a mixture ratio shift should also be taken into

account to obtain high performance.

Onemethod is to determine the chamberpressure so that the desired

thrust level is obtained, and the specific impulse is a maximum. This

option is included in the computer programby combination of the maximum

specific impulse and the constant mixture ratio uprating procedure.

A secondmethod considers that most rocket engines operate by some

percent off the optimummixture ratio, which yields maximumIsp. Since

the mixture ratio of a rocket engine shifts during flight because of

acceleration, propellant column height above pumpinlet, density

change of the propellants as a function of temperature, and manyother

reasons, it is preferred to stay on the side of the maximumimpulse that

shows the smaller slope. This allows a greater variation in mixture

ratio for the sameIsp tolerance, comparedto the other side having a

steePer slope.

The calculation proceeds as follows:

At first the combustion chamberat its original performance

level is considered. Then for the samechamberpressure, the mixture

ratio is determined that will yield maximumspecific impulse. The

difference between these mixture ratios is expressed as a percentage,

and the sign indicates on which side of the optimum _-value the

combustion chamber is presently operating. Next the chamberpressure

is varied, and the new point of maximumIs_with the corresponding
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optimum mixture ratio is calculated. Deviating from this optimum mix-

ture ratio value by the initially calculated per cent value, an uprated

mixture ratio is found, with which the desired thrust level and the cal-

culated level must be compared. If the thrust level difference does not

satisfy a chosen tolerance, the whole procedure must be repeated.

COMBINATION OF SHIFTING AND FROZEN EQUILIBRIUM

As stated in Reference i0, dissociation is becoming more and more

pronounced when the temperature rises above 1500°K. In the exit area

of rocket engines, the static temperature is normally below this value.

A real expansion process does not follow either the shifting or frozen

equilibrium assumption, but occurs somewhere between these two cases.

To calculate data that are close to real values, a combination of both

concepts was considered in the calculation program and can be used if

desired. The calculation starts with shifting equilibrium and switches

to frozen equilibrium when the static temperature of the exhaust products

falls below T = 1500°K.

PARAMETERS

Thermodynamic and rocket performance parameters are calculated

according to the generally indicated procedures in text books (Ref. 4).

The equations used in the computation process presented are indicated

in Appendix G.
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TOLERANCES

When a combustion-expansion process is calculated, an inaccuracy

of the results develops because of the influence of the two main factors.

First, _ the thermodynamic data, entropy, enthalpy, and specific heat at

constant pressure, vary with different sources. Data for the heat of

formation show discrepancies that are caused by the way they were

obtained (calculated, measured, determined under the assumption of

certain molecular structures). In forming polynomials for these

properties as a function of temperature, an additional inaccuracy deve-

lops depending on the type of polynomial and the temperature range

covered.

Secondly, the calculation procedure does not produce exact answers.

Numerical solutions and iteration procedures can only yield answers

within a certain tolerance. This refers especially to the determination

of the mole numbers, temperature, enthalpy, entropy and in particular

to the throat and exit area conditions on which all the rocket perform-

ance parameters are dependent.

A theoretical error analysis for the complete calculation procedure

is not favourable because of the complexity of the program.

Usually the following tolerances resulted in a better accuracy

than required (compare Reference i).

With the nomenclature of Appendix B we apply to:

I. Equilibrium equations

l_Fil < 5 x iO-6
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t

.

,

,

o

,

Mass balance equations

1 Falu1 _ < 5 x 10 -7

I Fb -71 - _ < 5 x 10 etc.
o

Pressure equation

1 - _--_ < 5 x lO -7

Enthalpy equation

I FH -71 - _-_ < 5 x I0

Entropy equation

1 - _ < 5 x 10 -7

Tolerance for the throat area condition

 0-4
Tolerance for the exit condition

-i _ e < i x i0 3

s

These tolerances are too stringent in some cases and must be

relaxed to obtain a solution. When a sequence of calculations is

performed over a range of chamber pressures and mixture ratios, the

tolerances must be relaxed so that the most critical case will pass.

During the iterations solving for mole numbers and temperature,

the calculated new approximations sometimes lead to a divergence and

failure in the computations. This occurs occasionally when the first

assumptions of the mole numbers were not close enough, and the
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corrections caused divergence or an underflow in the electronic computer.

To avoid such breakdowns, the following procedures were applied:

i. If the mole numbersare corrected and becomeso small

that the computer assigns them equal to zero, these

terms shall be reset to a small value (I x 10-35).

o If .the corrections become greater than i0, they are to

be divided into i0. All corrections shall then be

multiplied by the maximum absolute value obtained.
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APPENDIX A

THERMODYNAMIC RELATIONS

Each property of state can be expressed by two other properties

of state. From the relationship F (P, v, T) : 0 an important equation

is derived.

v : F (P, T)

T : F(P, v)

dv : O(--T_/ dT +
\o_:1 P

O(_._) dP (I16)
T

v P

(ll7)

Replacing dv in one of the equations and rearranging the terms yields

P T v

A similar expression will be developed from the relationships

T : F (u, v)

u = F (T, v)

dT = O(--_u ) du+
V

du = dT +

V

(i19)

(izo)

8(_-_v) dv (1Z1)
U

(+;-)T dv (1ZZ)

Substituting du in one of the equations and rearranging gives

v u T

(lZ3)
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The first law of thermodynamics is represented by the equation

dq = du + Pdv (IZ4)

The second law of thermodynamics reads

dq = Tds (IZ5)

Introducing the definition of enthalpy

h = u + Pv (IZ6)

Helmholtz function

a

Gibbs function

g =

their.differentials are

dh =

da =

dg =

= u - Ts (IZT)

h - Ts (IZ8)

du + Pdv + vdP

du- Tds - sdT

dh - Tds - sdT

(IZ9)

(130)

(131)

Application of the corresponding equations representing the first and

second law of thermodynamics yields

dh = Tds + Pdv (13Z)

da = -Pdv- sdT (133)

dg = vdP - sdT (134)

Futhermore, the following relations hold true

a = F (v, T)

g : F (P, T)
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U

h =

S

S

T =

Their derivatives are

_(s, v)

_" (s, P)

F (T, P)

F(T, v)

_" (v, P)

( ) (_a)8 a dv + _ dT
da = _ T v

(135)

(136)

T P

(137)

du

dh

ds

_u

v s

P s

( ) (_s)= _)s dT + _ dP
-_ P T

(138)

(139)

(140)

ds = dT + dv

v T

(141)

(_)
dT = _ P

_T

v

dP (142)
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Comparing the equivalent terms in the corresponding equations

U

V

(-;v) -_ 1144/
S

Oh) = T (145)
3s p

3 g ) = v (146)
--gg T

(3_.g) = -s (147)
P

S

: s 1149,
V

All of the above equations involve properties and are exact differentials.

Since properties are independent of a path, the following mathematical

concept applies.

dz = Adx + Bdy

3A

Y

This results in the subsequent relationships

S V

(15o)
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3T

(VVs%
3P 3s "

V

(isi)

(15Z)

(153)

The specific heats are, by definition

_= (_)
V

P

(154)

(155)

Expanding these two equations indicates

3uCv=(v_-)_)
V V

3h 8s

P P

Applying equations (143) and 145) and expanding the terms

C _S_:_ (_) •(_T)(_)
V V V

_S

P P .P

Substitution of terms from equation (150) and (151) yields

C V

V S

3v _ = Cp_v,_ -v (_)

(156)

(i57)
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APPENDIX B

APPLICATION OF NEWTON-RAPHSON METHOD TO
SOLVE FOR MOLE NUMBERS AND TEMPERATURE

This appendix applies the Newton-Raphson method to equations
39, 40, 41, 42, 44, 45, and 46 to linearize the original non-linear
equations that are used to solve for the mole numbers, Ni, and the
temperature, T.
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value

I. Equilibrium equation

F i = 0 _ RT /i + inPi - ailnPz - bilnPy
c i in Px ....

(158)

AF i = 0 - F i for the right solution F i = 0, otherwise F i has a

8Fi 8Fi 3Fi

AF i =-8-_- AA +-_i APi +-_- AT

8Fi
--= 0
8A

8F i 1 8F i a i %F i b i aF i c i
_=m. = _ _; _ = _ _; _= _ _
8Pi Pi' 3Pz Pz SPy Py 8Px Px

OF i 8 (_AGT°_ = 8 (AHT°- ATS° =

i
1 a i b i c i [AnT°_

AT

AF i = AlnPi - aiAinPz - biAlnPy

(AHT°._ A In T

Vrr) 

- ciAlnP x - ....

When a condensed product is formed, the partial pressure

must be neglected due to the section entitled "condensed phases. "

The equilibrium equation for condensed phases yields:

AF i = _ aiAlnP z - biAlnPy - ciAlnP x - ....

(159)

(AHT°_ A in T

\RT /i

(160)

Z. Mass balance equation for element Z

115
1

F a = ato t = __
i=l

ai Ni (161)
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atot = ao for the correct solution

115
1

_F a = a o - _ Y_ aiNi
i=1

8F a 8F a 8F a

_F a 1 115

---_-= .._-_ Y_ aiNi
i=l

115
8Fa OFa_ 1 y-,
8Pi 8Ni A z..,

i=l
ai

8F a
--- 0
8T

AFa _lli _5 i)
= _ aiN

i'-

AA + a AN i

I'-

115
1

_Fa=-_
i=I

115
1

aiN i AInA + _ E
i=l

a iN i A in N i (162)

o Pressure equation

ll0

Fp=P= _ Pi
i=l

(163)

P = Po for the correct solution

II0

AFp = Po - _ Pi
i=l
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8Fp _Fp 8Fp

AFp =---_ AA + -_i APi + _'_AT

8Fp
_- 0

8A

0Fp 110

8Pi i= 1

8Fp
-0

8T

110 110

_Fp: E i_Pi= E Pi_inPi
i=l i=l

(164)

The summation of partial pressures can only be performed

for the gaseous products because the partial pressures for condensed

phases have to be neglected.

4. Enthalpy equation

115
l -- 0

Ft_t--H =_ _ (HT }N i
i:l

(155)

H = H o for the correct solution

115
1 - o

AF H= Ho - _ Y_ (HT)iNi
i--i

115

8F H 1 _ o
= - _ (HT)i Ni

i=l
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8FH 8FH i 115
- ON =X

i=l

(HT°)i

115
8F H 8

8T - 8T f-_
i"-i

115/ T) 115iNi _ (
(HT)iNi =_'_ 1 i= 1

_i Ni

115 115
1 _ o 1

_FI_ I = - _-_ y_ (H T )iNi AA + _ _ (_T°)iANi
i-i i=i

115
-- 0

+ _ (Cp)iNiAT
i=l

115 115
1 _- _ 1

= _ _ _ (HT°)iN i AlnA + _AFpI
i=l i=l

(_T°)i Ni A in N i

115

+ T _ - o(Cp)iNiAInT
i=l

(166)

5. Entropy equation for gaseous products

ll0
1

i=I

[(ST °)i - [ lnPi]Ni (1677

S = SO for the correct solution

110
1 o

AF S= SO - X _ [(ST )i - _" InPi]Ni
i=I

8F S 8F s 8F S

AFS = 8--'_ AA + _ AP i + _ AT

8O



110
8Fs 1

1--1
[ (ST°)i - Rln Pi] Ni

OF S OF S 1 110 [_ ( liO= = > (ST°)i-8_i _ _ " = i \i=l
In Pi + Ni

• =

_ = _ 1E 1 N 8 = 7 Ni

110

-I2
i=l

110
1

A 'S : - x E
i=l

ii0

-I2
i-1

II0 1 ri£ 0[(ST°)i - RlnPi]N i AA + K (ST°)i ANi
i=l

i='l

110 K 1 1 110

inPiANi - E Ni API + E
i=l _i Xi: 1

0 1 [I_0

[(ST- )i - RlnPi]Ni AInA + Xli= 1
i_

ll0 I

_.NilnPi AInNi - E P, NiAL_P

i=l

110
1

+XE
1--1

N i (Cp°)i A in T

C+)N P AT
i i

(ST°)iN i A InN i

(168)

For condensed phases, the partial pressures must be

neglected. The entropy equation is then

115
I o

S =K _ (ST)iNi
i=lll

(169)

81



Applying the Newton-Raphson method, we finally obtain:

115 115

=1_. 1
AFs A . _ N i(Cp°)iAlnT + _ . _

1=111 1=ill

Ni(ST°) i _ in N i

115

a . _ (ST°)i Ni z_ lnA
_i= 111

(z7o)
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APPENDIX C

APPLICATION OF NEWTON-RAPHSON METHOD TO SOLVE
PARTIAL DERIVATIVES FOR

CONSTANT PRESSURE AND TEMPERATURE

Thfs appendix applLes the Newton-Raphson method to equations 39,
40, 41, 4Z, 44, 45 and 46 to Iinearize them so that the partial derivatives
for constant pressure and temperature can be solved easily.
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Derivatives at Constant Pressure

io

by partial derivatives at constant pressure:

0= -- + InPi - aiinPz - biInPy -

\ "RTI i

0 - d -- + dlnP i - aidlnP z - bidlnPy -

\ _T li

Equilibrium equations considering gaseous compounds expressed

cilnP x - .... (171}

c idInPx - "''"

tZ_T°/

dt_li + d In Pi ai d in Pz bi d In Py _ ci d In Px
0 - dinT dinT din T dlnT dinT

d

dln T

: __ t--_/_ : _t,--_]_-'__-": -t _ s_

(AHT° 1 d in Pi d In Pz0 = - + -- ai

t "RT li dlnT dlnT

d in Py d lfiPx
bi dlnT - ci dlnT

(17z)

For condensed phases the equation is identical except that the

dlnPi = 0
dln T

(_HT I dlnPy dlnPxo dlnPz bi _ ci

0 = \ "RT /i ai dlnT dlnT dlnT (173)

3. Mass balance equation expressed by partial derivatives at

constant pressure"

115
1

a o =_ _-_a iN i (174)

i=l
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0 = -aoA +
115

ai N i
i-1

: 115 115 d_ai 0
0 =-aodA - + _ aidNi+ _-_N i .

i=l i=l/

da o and da i cannot change since mass is constant.

115

= -aoA dlnA .... + )__0

i-1
a i N i d in N i

or

115
dlnA

0 = -aoA ___dlnT .... +
i=l

a i Ni
d in Ni

din T

115 115

0 = - _ aiN i dlnA +
i=l i=l

a iN i d in N i

115 115

i_ I d In__._AA _ dlnNi0 = - aiNi dlnT + aiNi
= i=1 dlnT (175)

4. Total pressure equation expressed by partial derivatives at

constant pressure"

ll0

P = _ Pi (176}
i=l

ii0

8Y_ Pi
8P i=l

8--_ dP= 8 Pi dPi

Applying the mathematical concept

dlnx i

dx x
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or

dx = xdlnx

we obtain

ii0

E
i=l

Pi dlnPi = P dlnP

at constant total pressure the dlnP term is equal to zero.

P dlnP = 0

Dividing the equation by d in T it follows

ll0

0 = Z Pi dlnPidlnT
i=l

(177)

Derivatives at Constant Temperature

5,,

constant temperature"

Equilibrium equations expressed by partial derivatives at

0 ----
+ inPi - ailnPz - biinPy - c iInPx - ... •

RT ]i

O=d ET/i

(178)

+ dlnPi - aidinPz - bidlnPy c idInPx - ....

dlnA

d in Py d in Px
d In Pi ai d in Pz bi _ ci

+ dlnA dlnA d inA d inA

\-fT/i
0

dlnA

//AGT° /

\fYU/i is only a function of temperature)

_6



din Py din Px
0 din P.__i ai din Pz bi ci (179)

- d lnA d lnA d lnA d lnA

6. Mass balance equations expressed by partial derivatives at

constant temperature:

i15

A a o = i_l= a i N i
(18o)

115

= -Aa o + E aiNi0

i=l

Since N i = Pi we obtain

I15 115
8a o 8A 8Ni _ _ai

A _oao dao+ ao _-_ dA = E ai _ dPi + _._Ni _a i dai
Q

i=l i=l

Because of the constancy of elements

da o = 0

da i = 0 .

Dividing the equation by d in A and applying the following mathematical

conc ept

d inx 1

dx x

Or

dx = xdlnx

the result is

115
d in Pi

0 = -a o A ±n________+ Ea i Nid lnA d lnA
i=l

115
d In

0 = -a oA +E ai Ni rid InA
i=l

(181)
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APPENDIX D

DERIVATION OF THE CHANGE IN MOLECULAR
WEIGHT AS A FUNCTION OF PRESSURE AND

TEMPERATURE

Performing a mass balance due to the reaction equation.

A[NF(ZaF, YbF' XcF ..... )+ N (Za@, Yb@' Xc@..... )]

= >2,Ni( Zai, Ybi' Xci .... ) (18Z)

we find for each element

A(NFa F + N@ a@) L Z = ENiaiL Z (183)

A(NFb F + N O b@) Ly = ENibiL Y

A(NFc F + N@c@)L x =NNiciL X

A[NF(aFL Z + bFL Y + CFL X+ .... )+ N 0(a0L Z + b@Ly + c@L X

+ .... )] =_Ni(aiL Z + biL Y + ciL x + .... )

In general the molecular weight is defined as

M. = a.L + biLy + ciLx+ (184)i I Z ....

In a reaction process, the mole numbers and the molecular

weights of the reactants are known. This means the relative mass is

a constant. The mass balance equation reads now

I15

Am = EN.M.
r 1 1

i=l

Very often the mole numbers of the reactants are determined so

that the total mass of the reactants is equal to one. In this case,

mr= I.
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An average molecular weight can be defined for a mixture as

115
NM = _ NiM i

i=l

M -"

115

Ni Mi

i-1

N

Ii0 II0

With N = _ Ni = _ Pi = p (neglecting the volume of the

i=l i=l

condensed products) and the total mass of the products equal to the

total mass of the reactants, we obtain

Am r

M - p . (185)

Rewriting this equation in a logarithmic form and differentiating

with respect to In T results in

dlnM _ dlnA + dlnm r dlnP
dlnT dlnT dlnT dlnT

Since the mass, m r, will not change,

dlnmr = 0 .
din T

For a constant pressure process, P does not change and

dlnP
" 0 •

din T

Finally we obtain

f 4
-- " (186)
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Starting again from equation (185) in logarithmic form but now
differentiating with respect to in P yields

d InM d inA d In mr din P

dlnP dlnP din P din P

Due to the constancy of mass

dlnmr = 0 .
dlnP

The final result is

dlnM dlnA
= 1

dlnP dlnP

and can also be applied to a constant temperature process
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APPENDIX E

[ cal.]
R Lmo--_eO_]

sec

CONSTANTS AND CONVERSION FACTORS

1.98726 Universal gas constant

2.7182818285 Euler number

32. 1740 Gravitational constant at sea level

1Kcal _-- 3087.16928168 ft/ib

1 Kg 2. 2046 ib

i atm 14.696 ib
.----2
in
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APPENDIX F

NOMENCLATURE FOR CALCULATION PROGRAM

A

ACC

AISP

AISPX I
AISPY

AISPZ

AISPM

AISPRA

AISPP_V

ALPHA

AMNF

AMNFS

AMNe

AMNeS

AMNR i

AMRW

AMRWD

in

[sec]

[sec]

E--]

[°°_e 1

[m°_e I

mole]

mole]

Multiplier in reaction equation to make th_

partial pressures and mole numbers numerically

equal

Injector plate area

Local specific impulse

Previous values of AISP during iteration for

maximum specific impulse at constant chamber

pressure

Maximum specific impulse

Real specific impulse at predetermined altitude

Real vacuum specific impulse

Mole per cent value of oxidizer A in a mixture

Mole number of the fuel, determined as one (i)

Mole number of the fuel to yield a mglecular

weight of one (i) for the propellants

Mole number of the oxidizer to satisfy the required

mixture ratio of the propellants by weight

Mole number of the oxidizer to yield a molecular

weight of one (i) for the propellants, considering

also the desired mixture ratio by weight

Mole ratios of the combustion products

Mixture ratio by weight

Chosen mixture ratio increment for iteration on

maximum specific impulse at constant chamber

pressure
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AMRWL

AMRWM

AMRWS

AMRWX }
AMRWY

AMRWZ

AMW

AMWP

AMWR

ANA

ANB

AND

ANG

ANi

AS

ATWC

ATWF

ATWH

ATWHE

ATWN

ATW8

ATWU

ATWX

ATWY

ATWZ

BETA

Ci

C*

[-]

[-]

[-]
[-]

[mo  l

[-i

[--]

Original mixture ratio by weight to determine the

PERCT value for thrust level uprating

Optimum mixture ratio by weight yielding maximum

specific impulse for considered chamber pressure

Stoichiometric mixture ratio

Previous values of AMRW during iteration for

maximum specific impulse at constant chamber

pressure

Average molecular weight per mole of gaseous

products

Relative mass of propellants for the required
mixture ratio

Relative mass of the reaction products defined as

one (i)

Number of Nitrogen gram atoms in oxidizer A and B,

and Fuel G and D

Number of gram atoms in the combustion products

Throat area

Atomic weight of Carbon, Fluorine, Hydrogen,

Helium, Nitrogen, Oxygen, with U, X, Y, Z as

available spaces for other elements

Mole per cent value of oxidizer B in a mixture

Number of carbon gram atoms in the combustion

products

Characteristic velocity
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CA

CB

CD

CG

CF

CFA

CFRA

CFRV

CFV

CKI

CK2

CK 3

CK 4

CN i

CNS

CNSMCP

CONVER

CP i

CPP

C*R

CRS

CRSS

CVV

DELTA

ol

[-]
[-]

H
[-]

[mole]

[mo e]

[mole]

_al ]

ft.

[-]
[-]
[7_ole°KJ

I--]

Number of carbon gram a_toms in oxidizer A and B,

and fuel G and D

Local thrust coefficient

Thrust coefficient at predetermined altiL

Real thrust coefficient at predetermined altitude

Real vacuum thrust coefficient

Vacuum thrust coefficient

Conversion factor

Conversion factor

Conversion factor

Conversion factor

Mole numbers of the combustion products

Summation of the mole numbers of the combustion

products

Summation of the mole numbers of the gaseous

combustion products only

Error left in the iteration process due to the

approximated values

Specific heat at constant pressure of the individual

combustion products

Specific heat at constant pressure considering all

combustion products

Real characteristic velocity

Local isentropic exponent

Isentropic exponent in the throat area

Specific heat at constant volume considering all

combustion products

Mole per cent value of fuel D in a mixture
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DH i

DInA

Enthalpy difference between the combustion products

and the elements from which they are formed. All

values divided by R,T

Finite difference of the logarithm of th'e reaction

equation multiplier.

DInP i

DPA

DPM

DPP i

DQi

DTM

DTPi

E

EQUIVR

ETAC*

ETACFV

ETAW

EXPR

EXPRL

Fi

[4

[4

[-]

[4
[4

[4

[-]
[4
[4

Finite differences of the natural logarithm of the

partial pressures (mole mumbers)

Change of molecular weight as a function of

temperature'at constant pressure

Change of molecular weight as a function of

temperature at constant pressure

f_inP_

Partial derivatives \_---InT/p at constant pressure

Constant term in the equilibrium equation

Change of molecular weight as a function of pres-

sure at constant temperature

f_in P_ at constant

Partial derviatives \ BI n A JTtemperature

Euler number (2.7182818285)

Equivalence ratio; mixture ratio divided by the

stoichiometric mixture ratio

C_rrection coefficient for the characteristic

velocity

Correction coefficient for the vacuum thrust

coefficient

Correction coefficient for the mass flow rate.

Expansion ratio

Required expansion ratio

Number of fluorine gram atoms in the combustion

products

95



FA

FB _e]FD

FG

FROZ [---_

FTA [ib]

FTRV b

FX

FY / [lb l

H

HA

HB

HD

HG

HE i

HEA

HEB

HED

HEG

HO

HT i

HTFD }HTFG

H

[_call
[ eJ

Number of fluorine gcam atoms in oxidizer A and

B and fuel D and G

Desired thrust level

Switch constant for frozen equilibcium

Local theoretical thrust

Theoretical thrust at predetermined altitude

Real thrust at predetermined altitude

Real vacuum thrust

Theoretical vacu_n thrust

Previous values for FTRA during iteration for

desired thrust level

Mole per cent value of fuel G in a mixture

Enthalpy of all combustion products

Number of hydrogen gram atoms in the combustion

products

Number of hydrogen gram atoms in oxidizer A and B,

and fuel D and G

Number of helium gram atoms in the combustion

products

Number of helium gram atoms in oxidizer A and B,

and fuel D and G

Enthalpy of the propellants

Molar enthalpy of the combustion products

Enthalpy of fuel D and G at normal boiling point

or at T = 298.15 ° K
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HT@A 1HT@B

IA

IB

IC

ID

IE

IF

!G

IH

II

IJ

IK

IL

IM

K

KE

KF

Ke

[-]
[-]
[-]

[-]

[-]
[-]
[-]

[-]
[-]

E-]
[-]

[-]
[-]

[-]

Enthalpy of oxidizer A and B at normal boiling

point or at T = 298.15 ° K

Switch constant for throat area calculation

Switch constant within the throat area calculation

Switch constant considering either calculation at

a required expansion ratio or many local conditions

downstream of the chamber

Switch constant considering static pressures in a

chosen range

Switch constant considering static pressures in a

chosen range

Switch constant considering static pressures in a

chosen range

Switch constant considering the calculation of a

desired thrust level

Switch constant considering the calculation of a

maximum specific impulse

Switch constant within the calculation routine

for maximum specific impulse

Switch constant within the calculation routine

for maximum specific impulse

Switch constant considering the difference between

an optimum and required mixture ratio

Switch constant considering a combination of a

desired thrust level and a maximum specific impulse

Switch constant within the desired thrust level

calculation routine

Test constants

Gravitational constant at sea level, 32.174

Molecular weight of fuel

Molecular weight of oxidizer
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KKIi
KK2i
KK3i
KK4i
KK5i
KK6i
KK7i

@i

eA
eB
eD

P

Pi

PC

PAM

PCM

PERCT

[a4
[atm_
Eatm_

_0 E_m]
_, [_m]
_,_ [_tm]

R [_eOKl

Polynomial coefficients for calculation of

enthalpy, entropy, and specific heat at constant

pressure

Number of oxygen gram atoms in the combustion

products

Number of oxygen gram atoms in oxidizer A and B,

and fuel D and G

Local static pressure of all combustion products

Local partial pressures of the individual

combustion products

combustion chamber end stagnation pressure

Ambient pressure at considered altitude

Optimum combustion chamber end stagnation pressure

which belongs to a required thrust level yielding

maximum specific impulse

Percent value considering the deviation in mixture

ratio off the optimum value yielding maximum

specific impulse

Predetermined local static pressure of the

combustion products

Static pressure of the combustion products in the

throat area

Local static pressure of all combustion products

Previous values for PC during iteration on desired

thrust level

Universal gas cons.tant 1.98726

Specific gas constant for all combustion products
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RSS

S

SHIFT

SO

ST i

T

TL

TC

TS

Tang a

Ui

UA}UB

UD

UG

V

VC

VF

VH

VHE

VN

Ve

VU

VX

VY

VZ

V$

LgoKJ

[-]

m cal ]

ole o_J

[-]

Specific gas constant for all combustion

products in the throat area.

Entropy of all combustion products

Switch constant considering shifting equilibrium

calculation

Calculated entropy value which is considered in

the isentropic expansion process

Molar entropy of the combustion products

Temperature

Temperature limit counsidering the transition from

shifting to frozen equilibrium calculation procedure

Theoretical combustion chamber temperature

Theoretical static temperature in the throat area

Slope of the secant for maximum specific impulse

calculation.

Number of gram atoms for an element (to be

determined) in the combustion products

Number of gram atoms for an element (to be

determined) in oxidizer A and B, and fuel D and G

Local velocity

Most common valence of carbon

_luorine

Hydrogen
Helium

Nitrogen

Oxygen
Element to be determined

Element to be determined

Element to be determined

Element to be determined

Local speed of sound
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VSS

W

WR

Xi

XB

XD

XG

Yi

YB

YD

YG

Zi

ZA}ZB

ZD

ZG

OF

OH

OHE

ON

08

OU

OX

OZ

iC

IF

IH

IHE

IN

le

IU

ix

iY

iz

g_Imo eJ

H

Speed of sound in the throat area

Theoretical weight flow rate

Real weight flow rate

Number of gram atoms for an element (to be

considered) in the combustion products

Number of gram atoms for an element (to be

considered) in oxidizer A and B and fuel D and G

Number of gram atoms for an element (to be

considered) in the combustion products

Number of gram atoms for an element (to be

considered) in oxidizer A and B and fuel D and G

Number of gram atoms for an element (to be

considered) in the combustion products

Number of gram atoms of an element (to be

considered) in oxidizer A and B and fuel D and G

Number of gram atoms yielding a relative mass of

one (i) for the propellants considering carbon,

fluorine, hydrogen, helium, nitrogen, oxygen, and

elements to be determined (U, X, Y, Z)

Number of gram atoms yielding a relative mass of

one (I) for the combustion products, considering

carbon, fluorine, hydrogen, helium, nitrogen,

oxygen and elements to be determined (U, X, Y, Z)
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APPENDIX G

CALCULATION PROGRA_N4

In this section the complete calculation procedure is documented.

Input data, determination of chemical elements and compounds, equa-

tions, tests, option to solve for various desired conditions and output

data are listed. The simplified flow chart in Appendix H shuws the

arrangement of all equations and tests.

The computer listing and pertinent flow chazzs are available

and can be obtained on request from the author.
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GENERAL COMBUSTION PROGRAM

I. Molecular Weight of Oxidizer [ g/mole]

2. Molecular Weight of Fuel [ g/mole]

3. Mole Number of Oxidizer to Satisfy Desired Mixture Ratio [mole]

4. Relative Weight of Propellants for the Required Mixture Ratio [ g]

So Number of Gram Atoms Yielding a Relative Weight of One for the

Propellants [ - ] ._
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/

KO= ALPHA(CA" ATWC + FA" ATWF + HA" ATWH + HEA" ATWHE

+ ANA'ATWN + 0A'ATW0 + UA'ATWU + XA'ATWX + YA'ATWY

+ ZA'ATWZ) + BETA(CB'ATWC + FB'ATWF + HB'ATWH

+ HEB'ATWTHE + ANB'ATWN+ OB'ATWO + UB'ATWU

+ XB "ATWX + YB "ATWY + ZB" ATWZ)

KF = GAMMA(CG "ATWC + FG " ATWF + HG "ATWH + HEG "ATWHE

+ ANG'ATWN+ OG'ATWO+ UG'ATWU+ XG'ATWX + YG'ATWY

+ ZG'ATWZ)+ DELTA(CD "ATWC + FD'ATWF + HD'ATWH

+ HED'ATWHE + AND'ATWN+ OD'ATWO+ UD'ATWU + XD'ATWX

+ YD "ATWY + ZD "ATWZ)

AMNO =
AMRW. AMNF • KF

K0

AMWP = AMNF • KF + AMN0 • K0

OC = AMN0(ALPHA. CA + BETA. CB) + AMNF(GAMMA . CG + DELTA. CD)

OF =

AMWP

AMNe(ALPHA • FA + BETA. FB) + AMNF(GAMMA. FG + DELTA • FD)

OH =

AMWP

AMN0(ALPHA. HA + BETA. HB) + AMNF(GAMMA. HG + DELTA. HD)

OHE =

AMWP

AMNO(ALPHA. HEA + BETA. HEB) + AMNF(GAMMA. HEG + DELTA. HED)

ON =

AMWP

AMN0(ALPHA • ANA + BETA • ANB) + AMNF(GAMMA • ANG + DELTA. AND)

O@=

OU =

OX =

AMWP

AMN0(ALPHA •0A + BETA. @B) + AMNF(GAMMA •@G + DELTA. 0D)
AMWP

AMN@(ALPHA •UA + BETA. UB) + AMNF(GAMMA- UG + DELTA. UD)
AMWP

AMN0(ALPHA • XA + BETA • XB) + AMNF(GAMMA . XG + DELTA • XD)
AMWP

iii



o Mole Number of Oxidizer to Yield Molecular Weight of (D

Propellants [ mole/g/

_r

o Mole Number of Fuel to Yield Molecular Weight of One for Propellants

[mole/g]

8. Stochiometric Mixture Ratio [ - ]

9. Equivalence Ratio [ - ]

10. Enthalpy of Propellants [ cal/g/

11.

12.

Test on T for Proper Selection of Temperature Ranges for

Entropy, Enthalpy and Specific Heat Polynomials.

Local Enthalpy of the Combustion Compounds [cal/mole]

i=1-115

13. Local Specific Heat at Constant Pressure of the Combustion Compounds

[cal/mole°K] i = 1 - 115

14. Local Entropy of the Combustion Compounds [ cal/mole °K]

i=1-115

15. Test Whether Shifting or Frozen Equilibrium is Invoked
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OY = AMNe(ALPHA •YA + BETA .YB) + AMNF(GAMMA •YG + DELTA •YD)

OZ=

AMWP

AMNO(ALPHA •ZA + BETA •ZB) + AMNF(GAMMA •ZG + DELTA •ZD)

AMWP

AMNOS =
AMN8

AMWP

AMNFS =
AMNF

AMWP

AMRWS = (GAMMA [CG -VC + FG.VF + HG.VH + HEG .VHE + ANG .VN

+ @G.V@ + UG-VU + XG.VX + YG.VY + ZG-VZ]

+ DELTA [CD .VC + FD.VF + HD.VH+ HED.VHE + AND.VN

+ @D.V@+ UD.VU + XD.VX + YD-VY + ZD'VZ]).K@/

-(ALPHA [CA-VC + FA.VF + HA.VH + HEA'VHE + ANA.VN

+ @A-V@ + UA.VU + XA-VX + YA-VY + ZA-VZ]

+ BETA [CB-VC + FB.VF + HB.VH + HEB -VHE + ANB.VN

+ @B-V@+ UB-VU + XB.VX + YB-VY + ZB-VZ]).KF

EQUIVR =
AMRW

AMRWS

HO = AMNOS(HTOA" ALPHA + HTOB •BETA) + AMNFS (HTFG •GAMMA

+ HTFD •DELTA)

HT i = RT. Nil + KKZi _- + KK3i "T + KK4i _ + KK5i "5- + KK6i

CPi = R. (KKli + KKZi T + KK3i T z + KK4i T 3 + KK5i T 4)

T z T 3

ST i = R(KKIilnT + KKZiT + KK3i _--+ KK4i -_-

If FROZ = l Skip to Step 20

If SHIFT = I Continue

m 4

+ KK5i -_- + KK7i)

113



16. Simultaneous Set of ]Equations Solving for A, T, Pi

ao Equilibrium Equations [ - ]

Gaseous Products: i = 1 to 100

Condensed Products: i = lll to ll5, in this case in Pi = 0

The term of the left-hand side of this equation is equal to -DQ i

and approaches zero for a solution.

The positive parenthetical term on the right hand side of the

equilibrium equation, not multiplied by D In T, is abbreviated

by DH i
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_A,,,,(_,o-°'(_),o,-_i(_),,,.,
-_ ' _rcs_'__

-Zi(-_--7_)n ° -(._)i +ln Pi + i[_--_'-,lol

,_,r,,_,l,'_ ] ,,_r,,'__,l,:_] [(_) _,:p,o_]+ iL_---_--/,o3- InPl03 + il_--_--/, _ - inPl04 + AN i los

+orfs_'_,oo]+,_,rfs_,_iL_-E.-],o6- InP iL k--.R--],,:,.,-

+.,<r(_-,_ _,o<,]+7.r(_.-,_iL \---E-/_._-.in iLt--E-j,.o -

lnPl07 + iLk--g-/los-lnPl08

InPll0l _= DlnP i - Ci,DlnPl01

,,%

JJ

- FfDlnPl02 - Hi.DlnPl03 - HEi.DInPI04 - ANfDInPI05 - 0i'DlnPl06

- UfDlnPI07 - Xi'DlnPl08 - Yi,DlnPI09 - Zi,DlnPll0 - _ i

_c,(_),,,_;,(_),,,_,-,,(_),o,-._,(_),o,--,,-,,,,(_),o,
HT HT HT HT

-0i('_),0 , - Ui('_),_ t - Xi(_-_),o 8 - Yi(_)iS- Zi(R_T),,o] DlnT
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bo Mass Balance Equations [ - ]

Co Total Pressure Equation [atm or mole]

The partial pressures and mole numbers are equivalent with the
application of A.
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,I

A ° ( 1,,_ )(,,5 ) ,,_oc - x Z ci. Pi -- - E ci. Pi .D1.A+ Z
i=l i=l i=l

Ci" Pi" DInPi

(o, ,,_ )(,,_ ) "_- _ Fi" P i = - _ Fi" P i .DlnA +
A" F Xi=l i=l i=l Fi" Pi" DInPi

(o ,'" i) ("' i) ,,,Hi'P = - _ Hi'P "DlnA+ Z
A- H-_i=l i= I i= 1

Hi "Pi'DInPi

A (o ,"_ _)(1,5 ) ll_HE - _ _ HEi" P = - Z HEi" Pi "DlnA + _.

i=l i=l i=l
HEi " Pi " DinPi

(o ,'" i) ("_ ) '_
A N - :i'- 1Z ANi' P = - i =1_ ANi'P i "DlnA + i= 1 ANi" Pi " DlnPi

(o,'" _) (,,_ ) ,,," _ ei "P = - E ei.P i "DlnA+
A 0 _i=l i=l i=l

0i" Pi ' DinPi

A OU -_. Ui " P = - Ui "Pi -Dln_A +
• _. • _., °

Ui " Pi " DInPi

( ,'" ,)(,,_ ) "_- E xi-p -- Z xi.Pi "D1-A+
A OX _i=l i=l i=l

Xi .Pi • DinPi

( ,"_ )(,,_ ) "'A OY - X _ Yi" Pi = - _.. Yi" Pi 'DlnA +
1"--1 i=l i=l

Yi " Pi "DInPi

( ,'" ,)(,,, ) '"Zi'P = - _ Zi" Pi "DlnA + E
A. OZ __i= 1 i = 1 i = 1

Zi" Pi "DlnPi

110 110

PO- _ Pi = _ Pi. DlnPi
i--1 i=l
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d. Enthalpy Equation [ cal]

Replace enthalpy by entropy equation (16e} when step 44 has been

passed the first time.

e. EntropyEquation [ cal / ° K]

Use ste p 16d during the first calculation until step 44 is passed.

17, Test on Tolerances

Duringthe first calculation loop ] 1- s% [ must be by-passed.

During all consecutive calculation loops 1 - H--'O must be by-passed.

P, H, S, IC, IF, IH, IHE, IN, I@, IU, IX, IY, IZ, are the constants,

calculated during the iterations in the simultaneous set of equations

solving for A, T, and Pi (see step 16b, 16c, 16d, 16e), which have

approximately the same value as PO, HO, SO, OC, OF, OH, OHE,

ON, 0@, OU, OX, OY, OZ.
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A° • Pi = - • T •O- 'R'T'E K----Yi
i-1 i-1

115

+ _ _--7_ i" Pi "R .T. DlnP i + R. T _ i" P
1 1 1 1

P_ • DlnA

• DlnT

=+R

+

" Pi - Pi'inP - .R
i = 1 i _ i = 111

• Pi DInT - R" i(1 + lnPi) " ' Pi .DlnPi
=1 i i=l i

115

Z
i = ill i i= ll_

Pi - Pi" inPil.
D InA

-R

115

i = 111
Pi " DlnA

P

PO

H

HO

S

SO

1C

OC

IF

OF

1H

OH

<5x 10 -7

<5x 10 .7

<5x 10 -7

<5x 10 -7

<5x10 -7

<5x10 -7

,HE]OHE < 5 x 10 -7

IN

ON
<5x I0 -7

Continue otherwise go to step 18

Continue otherwise go to step 18

Continue otherwise go to step 18

Continue otherwise go to step 18

Continue otherwise go to step 18

Continue otherwxse go to step 18

Continue otherwise go to step 18

Continue otherwise go to step 18
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DQ i is the constant in the equilibrium equation which approaches zero.

18. New Estimates for Simultaneous Set of Equations

i = 1 to 115

If any IDln "''I > 10 calculate

values by this factor

10

IDln...l max
and multiply all D in...

19. Test on Condensation Products
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1 0--_ <5 x 10-7

I IU [ 0-71 - O---_ <5 x 1

[1 1X [<5 x10-7---OX

1 OY <5xl

I zl1 OZ <5xl

DQi[ < 5 x 10 -6

Continue otherwise go to step 18

Continue otherwise go to step 18

Continue otherwise go to step 18

Continue otherwise go to step 18

Continue otherwise go to step 18

Skip to step 19 otherwise go to step 18

InP i = inP i + DInP i

InA = InA + DInA

inT = InT + DInT

Return to step II

Determine Pi and test:

Determine A

Determine T

HT HT ST

If all values are > 0 go to step 27.

If Pi = 0

lnP101<0

call for No.

in Pi --- 0

call for No.

lnP i <__0

call for No.

lnP i <__0

call for No.

lnP i _< 0

call for No.

to step 11

set Pi = I x 10-as

1 1 1 and continue

1 1Z and continue

1 1 3 and continue

114 and continue

115 and return
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20. Entropy of the Combustion Products [cal/g °K]

21.

22.

Test on Tolerance for Constant Entropy Process at Frozen Equilibrium

Condition

New Estimates on Temperature for Constant Entropy Process at Frozen

Equilibrium Condition

23. Partial Pressures of the Combustion Products for Frozen Equilibrium

i = 1 to 110

24. Sum of the Partial Pressures for all Gaseous Combustion Products latin]

25. Simultaneous Set of Equations Solving for Derivatives DPP (P = Constant)

a. Mass Balance Equations

For definition of DH i see equation 16a
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S " CN i - R
1 10 CNi" PO ]

CN i • in CNSMCPJ'A/1i-1

II - ol<S x Io-7
4

skip to step 23 otherwise continue

DInT =
(so- s)

CN i
i=l i

in T = In T + D In T

determine T and return to step 1 1

CN i • PO
Pi = CNSMCp

110

PSUM = _ Pi
i=l

O "-

II0

Ci "Pi[ Ci "DPPI01 + F i•DPPI02 + H i •DPPI03 + HE i •DPPI04

i=l

+ AN i •DPPI05 + @i "DPPI06 + U i •DPPI07 + X i. DPPI08 + Yi "DPPI09

+ Z i. DPPII0 + DHi] +

115

Z ci. pi- DPPi -,A. IC •DPA

i=lll

II0

i=l
Fi "Pi[ Ci" DPPI01 + F i.DPPI0Z + H i. DPPI03 + HE i -DPPI04

+ AN i" DPPI05 + @i-DPPI06 + U i" DPPI07 + X i- DPPI08 + Yi "DPPI09

+ Z i. DPPI10 + DHi] +

115

Fi" Pi" DPPi - A" IF •DPA

i= IIi

123



O --

110

H i . Pi[Ci . DPP101 + F i . DPP102 + H i • DPP103 + HE i • DPP104
i=l

+ AN i • DPP105 + e i. DPPI06 + U i • DPP107 + X i • DPP108 + Yi • DPP109

115

+ zi.DPPIIo+ o i]+
i=lll

Hi'Pi'DPP i - A'IH'DPA

Ii0

i=l

HEi • Pi[ Ci " DPP101 + F i • DPP102 + H i • DPP103 + HE i • DPP104

+ AN i • DPP105 + 0i • DPP106 + Ui • DPP107 + X i • DPP108 + Yi" DPP109

115

+ Z i'DPPll0 + DHi] +
i=lll

HE i-Pi-DPP i - A'IHE'DPA

110

i=l
AN i-Pi[Ci.DPP101 + F i.DPP10Z + H i .DPP103 + HE i-DPP104

+ AN i • DPP105 + 0 i • DPP106 + U i • DPP107 + X i • DPP108 +- Yi " DPP109

+ Z i •DPPII0 + DHi] +

115

ANi'Pi'DPPi - A'IN-DPA
i=lll

O __

110

@i.Pi[Ci. DPP101 + Fi'DPP102 + Hi-DPP103 + HEi'DPP104
i=l

+ AN i . DPP105 + @i " DPP106 + U i - DPP107 + X i • DPP108 + Yi • DPP109

115

+ Z i.DPPll0 + DHi] + Z
i=lll

@i'Pi'DPPi - A. 10"DPA

O ._

110

Ui • Pi[ Ci • DPP101 + Fi • DPP102 + Hi • DPP103 + HEi • DPP104
i=l

+ AN i • DPP105 + 0 i • DPP106 + U i • DPP107 + X i • DPP108 + Yi • DPP109

+ Zi • DPPll0 + DHi] +

115

Ui'Pi'DPPi - A.IU'DPA

i= IIi 125



Z5 a. (Continued)

Equili,brium Equation for Condensed Products

i = 111. to 115

Total Pressure Equation

126



110

O = _. Xi.Pi[Ci. DPPI01 + Fi'DPPI02 + Hi'DPPI03 + HEi. DPPI04
i=l

+ ANi'DPP105 ÷ @i'DPP106 + Ui'DPP107 + Xi'DPP108 ÷ Yi'DPP109

+ Z i.DPPll0 ÷ DHi]

115

+ Z
i=lll

Xi'Pi'DPPi - A'IX-DPA

O

110

Yi" Pi[ Ci " DPP101 + F i • DPP102 ÷ H i • DPP103 ÷ HE i • DPP104
i=l

+ AN i • DPP105 + @i " DPP106 + U i • DPP107 + X i • DPP108 ÷ Yi " DPP109

I15

+ zi DPP11o+ oHi]+
i=lll

Yi'Pi'DPPi - A'IY'DPA

110

i=l
Z i. Pi[Ci- DPP101 + F i- DPP102 + H i • DPP103 + HE i • DPP104

+ AN i • DPP105 + @i " DPP106 ÷ U i • DPP107 + X i- DPP108 ÷ Yi " DPP109

115

+ zi- DPP1,o+ PHi]+ Z
i=lll

Zi'Pi'DPPi - A'IZ'DPA

O = Ci • DPP101 + Fi • DPP102 + Hi ' DPP103 ÷ HE i ' DPP104 ÷ ANi • DPP105

+ ei • DPP106 ÷ U i • DPP107 + X i • DPP108 ÷ Yi " DPP109 ÷ Z i • DPPll0 + DH i

110

i=l
Pi[Ci • DPP101 + F i. DPP10Z + H i • DPP103 ÷ HE i. DPP104

+ AN i- DPP105 ÷ @i" DPP106 + U i • DPP107 ÷ X i • DPP108 ÷ Yi " DPP109

+ Z i.DPPll0 + DH i]
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Do Derivatives for the Gaseous Combustion Products

Equilibrium Equation for Gaseous Compounds

i= 1 to 100

For definition of DH i see equation 16a

26. Simultaneous Set of Equations Solving for Derivatives DTP i

(T = Constant)

a. Mass Balance Equations

IZ8



DPPi = Ci. DPP101 + Fi • DPP102 + Hi. DPP10B + HEi. DPP104 + ANi • DPP105

+ 6i.DPP106 + U i.DPP107 + X i-DPP108 + Yi'DPP109 + Z i-DPPll0

+ DH i

115 110

O = - E Ci" Pi + E Ci'Pi[Ci'DTPI01 + F i.DTPI02 + H i.DTPI03

i=l i=l

+ HEi •DTPI04 + ANi •DTPI05 + @i "DTPI06 + Ui •DTPI07 + Xi •DTPI08

115

+ Yi. DTP109 + Zi. DTPll0] +

i = iii

Ci" Pi" DTPi

115 110

Fi'Pi + Fi'Pi[Ci'DTPI01 + Fi'DFPI02 + Hi'DTPI03

i=l i=l

+ HE i.DTP104 + AN i.DTP105 + @i'DTP106 + Ui'DTP107 + X i'DTP108

115

+ Yi'DTP109 + Zi'DTPll0] +
i = 111

Fi.Pi.DTP i

O .. _

115 110

Hi-Pi + Hi • Pi[ Ci • DTP101 + F i • DTP102 + Hi • DTP103
i=l i=l

+ HE i.DTP104 + AN i.DTP105+ 0 i.DTP106 + U i.DTP107 + X i.DTP108

115

+ Yi'DTP109 + Zi. DTPll0] +
i = III

H i•DTP i

O ... _

115 110

E HEi " Pi + HEi" Pi[Ci " DTP101 + Fi. DTP102 + Hi-DTP103
i=l i=l

+ HE i.DTP104 + AN i.DTP105 + 0 i.DTP106 + U i'DTP107 + X i.DTP108

115

+ Yi'DTPI09 + Z i'DTPII0] + _'
i = 111

HE i • DTP i
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O " --

115 II0

ANi'Pi + ANi "Pi[Ci 'DTPI01 + Fi. DTPI02 + Hi. DTPI03
i=l i=l

+ HEi • DTP104 + ANi • DTP105 + @i " DTP106 + Ui • DTP107 + Xi ' DTP108

115

+ _Yi" DTP109 + Zi" DTPll0] +
i = IIi

ANi • DTPi

_. _

I15 II0

ei.pi+
i-1 i=l

@i'Pi[Ci'DTPI01 + F i.DTPI02 + H_'DTPI03

+ HE i • DTP104 + Ai'J i • DTP105 + @i" DTP106 + U i. DTP107 + Xi. DTP108

115

+ Yi'DTP109 + Zi'DTPll0] +

i =lll
@i "DTPi

O _ --

115 Ii0

.Ui •Pi +
i=l i=l

Ui •Pi[ Ci •DTPI01 + Fi •DTPI02 + Hi •DTPI03

HE i•DTPI04 + AN i. DTPI05 + 0i •DTPI06 + Ui" DTPI07 + Xi" DTPI08

I15

+ Yi'DTP109 + Zi'DTPll0] ÷
i = 111

Ui'DTPi

0 _ --

115 II0

Xi'Pi ÷
i=l i=l

Xi'Pi[Ci'DTPI01 + Fi'DTPI02 + Hi'DTPI03

+ HE i • DTP104 + AN i • DTP105 + @i " DTP106' + U i. DTP107 + X i • DTP108

115

+ Yi'DTP109 + Z i.DTPll0] + _E]

i = iii

Xi.DTP i

0 " "

115 ii0

Yi'Pi + Yi" Pi[Ci "DTPI01 + Fi.DTPI02 + Hi-DTPI03
i=l i=l

+ HE i • DTP104 + AN i • DTP105 + 0 i • DTP106 + U i . DTP107 + X i , DTP108

I15

+ Yi. DTP109 + Zi'DTPll0 ] + Yi" DTPi
i =.Iii 131



Z6 a. (Continued)

Equilibrium Equation for Condensed Products
i= 111 to 115

be Derivatives for the Gaseous Combustion Products

Equilibrium Equation for Gaseous Compounds

i= 1 to 100

27. Separation of Mole Numbers and Partial Pressures Which Will be Used
for Further Calculations [ mole]

i= 1 to 115

28. Total Mole Number of the Combustion Product [mole]

Total Mole Number of the Combustion Product Minus the Condensed

Phases [mole]

29. Test on Desired Calculation Procedure During Expansion

30. Test

13Z



O .. _

115 110

Zi" Pi + Zi'Pi[Ci'DTPI01 + F i.DTPI02 + H i.DTPI03

i=l i=l

+ HE i •DTPI04 + AN i•DTP105 + @i "DTPI06 + U i •DTPI07 + X i .DTPI08

115

+ Yi'DTPI09 + Zi'DTPII0] +

i = Iii

Zi'DTPi

O = C i- DTPI01 + F i. DTPI02 + H i •DTPI03 + HE i •DTPI04 + AN i•DTPI05

+ @i'DTPI06 + U i'DTPI07 + X i'DTPI08 + Yi'DTPI09 + Z i.DTPII0

DTP i = C i .DTPI01 + F i •DTPI02 + H i •DTPI03 + HE i- DTPI04 + AN i •DTPI05

+ 0i.DTPI06 + U i.DTPI07 + X i.DTPI08 + Yi' DTPI09 + Z i.DTPII0

CNi = Pi

115

CNS -- _ CN i
i=l

II0

CNSMCP = _ CN i

i=l

(a) If shifting equilibrium calculation is desired set SHIFT = 1 and replace

enthalpy equation in simultaneous set of equations by entropy equation

(b) If frozen equilibrium calculation is desired set FROZ = 1

(c) If combination of shifting and frozen equilibrium is desired test

If T > TL set SHIFT = 1

If T < TL set FROZ = 1

If SHIFT = 1 go to step 25

If FROZ = 1 go to step 31
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31. For Frozen Equilibrium the Mole Numbers do not Change

32. Specific Heat at Constant Pressure for Frozen Equilibrium [ cal/mole °K]

33. Enthalpy of the Gaseous Combustion Products for Frozen Equilibrium

[ cal/g]

34. Change of Molecular Weight as a Function of Temperature at Constant

Pressure for Shifting Equilibrium [ - ]

35. Change of Molecular Weight as a Function of Pressure at Constant

Temperature for Shifting Equilibrium [ - ]

Coefficients of Derivative Compare with Pressure Row in the Matrix
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Set DPM = 0

DTM = 0

CPP -

115

CNi. GP i
i=l

110

_ CNi
i--1

H = CN i. HT •
[.i=l

and skip to step 37

DPM = DPA

DTM =
ll0

i=l

P

[Gi • DTPI01 + F i • DTPI0? + H i • DTPI03

+ HE i • DTPI04+ AN i • DTPI05 + 0i " DTPI06

+ U i • DTPI07+ X i • DTPI08+ Yi " DTPI09

+ Z i. DTPIlO]

-1

1 35



36. Specific Heat at Constant Pressure for Shifting Equilibrium [cal/mole °K]

Coefficients compare with enthalpy row in the matrix

37. Specific Heat at Constant Volume [cal/mole °K]

38. Specific Heat l_tio at Constant Entropy [ - ]

39. Mole Ratios of the Combustion Products [ - ]

i = lto 115

40. Average Molecular Weight Per Mole of Gaseous Products [g/mole]

The volume of the condensed phases is considered negligible com-

pared to the gaseous compounds.
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R.T _ HT Pi'DPA + R.T • CP
CN i • T i = 1 • CN i

i=l i;l i

+R.T

hi -- I_R'T]i "CNi'Ci'DPP101 + _ _R.T/i. CNi.Fi . DPP102
i=l

,,o+ _ \R.T]i'CNi'Hi-DPP103÷
i = 1 \R.T/i CNi'HEi'DPP104i=l
ll0

i = _ " cNi "ANi " DPP105 + HT

i = 1 i" CNi " ei " DPP106

+

i = 1 \R. T/i" GNi "Yi' DPP109 + ll0 _ HT

Z T/i" CNi.i=l

Xi • DPPI 08

Zi" DPPI I0

_R-T/i CNi'DPPi+ Z _R-T]i" CNi'DHii= 11 i=1

CVV = CPP - R" (1 - DPM) z
(I + DTM)-

CPp

CRS = - R
CPP

---_[1 + DTM] o [1 - DPM] 2

AMNR i =- CNi
115

CN i
i=l

AMW=-- A
110 -- " AMWR

CN i
i=l
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41. Convergence

oo o o
Delete

during the first calculation loop

during the following calculation loops

42. Specific Gas Constant [cal/g

R- 1.98726 [cal/mole°K]

°K]

43. Local Speed of Sound [ft/sec]

CK 3 -- 37.42098622

44, Local Velocity [ft/sec]

CK4 = 52.92126623

115
1

i;1
HT i • CN i from simultaneous set for shifting equilibrium

115
1
_'Z

1-1

HTi. CNi from step 33 for frozen equilibrium

45. Local Specific Impulse [ sec]

KE = 32. 1740 [ft/sec z]

46. Test

a. For chamber calculation determine the expansion ratio

b. For throat area calculation set

c. For all consecutive calculation loops
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CONVER =
z + (1-H)Z + (1 1c_Z + (1 IF_ 2- _'-_/ - o_'/

+ (1 - 5-_ ONE/ - 5-_/ b--6J - OU/IH)Z+ (i_ II-IEhZ + (I IN_Z + (i_ l@,_z+ (I I__U_z

+ 1- OX] + 1- OY/ + 1 OZ] + _ ooiZ +
i=l i=ll0

DQi z

R
RS =--

AMW

VS = CKs_]CRS'RS'T'KE

K_ 1 115
---

V=C O Ai=l
HT i •CNi) •

KE

V
AISP =-

KE

AGC
EXPR = ------

AS

PS = PO

and" skip to step 64

TS = T RSS = RS

VSS = VS

go to step 47

CRSS = GRS and go to step 47
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47. Local Expansion Ratio'[ - ]

48. Weight Flow Rate [lb/sec]

CK 1 = 0. 01049466

49. Characteristic V, elocity [ ft/s ec]

CK 2 = 14.696 [lb/inZatm]

50. Local Thrust Coefficient [ - ]

51. Local Thrust [lb]

CK z = 14.696

52. Thrust at Altitude [lb]

CK z = 14.696

53. Thrust at Vacuum [lb]

CK z = 14.696

54. Thrust Coefficient at Altitude [

CK z = 14.696

-]

55. Thrust Coefficient at Vacuum [ - ]

CK z = 14. 696

56. Real Thrust Coefficient at Altitude [ - ]

57. Real Thrust Coefficient at Vacuum [ - ]

58.

59.

Real Thrust at Altitude [lb]

CK_ = 14. 696

Real Thrust at Vacuum [lb]

CK 2 = 14. 696

140



• RS. T.VSS-PS
EXPR =

V. PO-RSS.TS

PO •V •AS •EXPR •CK,
W=

RS .T

C _-" _
PC •AS •KE •CK z

W

AISP. KE
CF =

FT = AS.PC'CF- CK z

FTA = FT - EXPR-AS •(PAM - PO) .CK z

FTV = FT + EXPR.AS.P0"CK z

CFA =
FTA

AS •PC •CK z

CFV =
FTV

AS. PC •CK z

CFRA =ETACFV'CFV- EXPR'--
PAM

PC

CFRV = ETACFV" CFV

FTRA = CFRA "AS •PC "CK z

FTRV = CFRV'AS'PC'CKz
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60. Real Weight Flow Rate [lb/sec]

61. Real Characteristic Velocity [ft/sec]

62. Real Specific Impulse at Altitude [sec]

63. Real Specific Impulse at Vacuum [ sec]

64. a. Calculate X value for plotting purpose

b. Store:

65. Test: If IA = 0

lflA_ 1

Options

conditions in the throat area are calculated

conditions except the throat area are calculated

66. Test: If IB = 0 print the results of the previous calculation and

determine the approximate throat parameters

IflB= 1
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WR = ETAW" W

C*R = ETAC* • C*

AISPRA =
FTRA

WR

AISPRV =
FTRV

WR

If V<VS calculate X = EXPR - 1

If V >_VS calculate X = -(EXPR - 1)

During the first calculation loop set: TC = T

SO=S

During every calculation loop store the results as indicated on page I07

• for printing purpose

Ilia = 0

IfIA= 1

skip to step 66

go to step 69

If IB = 0 PRINT, then calculate

PO = PC CRS + 1

T = TC CRS + I

Set IB = 1 and return to step 11

If IB = 1 go to step 67
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67. Test on Local Velocity and Speed of Sound

68. Test: IC is an Input Parameter Indicating

a. IC = 0 only chamber, throat and exit conditions are considered

b. IC=I intermediate locations between chamber,

area are considered

throat and exit

69. Test: Determination of whether the point of calculation is upstream

or downstream of the throat area
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I V I 0-4If 1 -_ _>0.2 x 1 calculate

I1 CRS • R • T

HO - (H + 2..AMW

PO = PO + R. T (CRS + I)
2 • AMW

and return to step 11

I vI
Set: IB = 0

< O. Z x 10 .4

IA=I

PRINT

and go to step 68

If IC = 0 calculate

PO = PC" E -[(0" 867" CRS + 0. 272)lnEXPRL + (0.699-CRS + 0.442)]

and return to step 11

If IC = 1 calculate

PO = PC - 10

and return to step 11

If IC = 0 test

If VS _>V skip to equation PO in step 70

If VS < V go to step 70

If IC = 1 skip to step 71
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70. Test on Required Expansion Ratio

71. Test on Expansion Ratio

The test on VS and V shall avoid an iteration on an expansion ratio in

the subsonic range

7Z. Test to Define Assumed Static Pressure Differences for Various

Ranges during the Expansion Process

73. Static Pressure in the Nozzle Between Chamber Pressure and 1 atm
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EXPR 1>If 1 Ex---P--R-L [ 1 x 10 -3 calculate

( + Ps'._ cRss_, as'- _ _7
HO - H RSS.TS.Z.PO z. EXPRL z]]

PO = PO + ( CRSS. PS z •RS .T _]. RS'T 1 CRS.PO z "RSS.TS.EXPRLZ).]

and return to step 11

EXPR ] 0_3If. 1 EXPRL '< 1 x 1

setIA = 0

PRINT

and go to new input reading

If EXPR > EXPRL

Test: If VS'> V

PRI ,NT

and go to step 7Z

If VS < V continue

PO = PO

Ii HO - (H
+ RS.T(I -

set IC = 0

and return to step II

If EXPR < EXPRL

PRINT

and go to step 72. a.

+ PS z. CRSS. RS z. T z _]

RSS-_ :-_-'-_iP--R_fU" po z/I

cRss. PS •Rs. •
po . ss Ts. xP L')J

(a) If ID = 1

(b) If IE = 1

(c) If IF = 1

skip to step 79 otherwise continue

skip to step 77 otherwise continue

skip to step 75 otherwise go to step 73

PO - PO - iO
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74. Test

75. Static Pressure in the Nozzle Between 1 atm and 0.2 atm

76. Test

77. Static Pressure in the Nozzle Between 0.2 atm and 0.1 atm

78. Test

79. Static Pressure Between 0. 1 atm and 0.02 atm

80. Test

81. Test:

148

IfIG= 0

IfIG= 1

maximum specific impulse can be calculated

desired thrust level for a fixed mixture ratio is

calculated



IfPO> 1

return to step 11

IfPO< 1

set PO = 1

IF= 1

return to step 11

PO = PO - 0. Z

If PO = 0.2

setIE = 1 PO = 0.3

IF =0

return to step II

PO = PO - 0. 1

If PO = 0.1

set ID = 1

IE=O

return to step 1 1

PO = PO - 0.0Z

If PO < O. OZ

set IA = 0

ID=O

go to new input reading

If IG = 0 go to step 8Z

If IG = 1 skip to step 103
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82. Test: If 11-I= 0

If II--I= I

no maximum specific impulse is considered

maximum specific impulse is calculated for a constant

chamber pressure and varying mixture ratio (exit

pressure equals ambi..ent pressure)

83. Test: During two calculation loops II = 0, afterwards II = 1

84. New Mixture Ratio for the Approach of Maximum Specific Impulse

A/VIRWD is Loaded, but an Assumed Value

85.

86.

87.

Determination of the Slope for a Tangent through Two Consecutive

Points on the Specific Impulse Versus Mixture Ratio Curve

Test: Calculation for maximum specific impulse

Check whether maximum has been obtained

88. Test: Slope of tangent is not small enough K = 0. 001

Slope of tangent is within required tolerance K = 0.001

89,. New Mixture Ratio for the Approach Towards Maximum Specific
Impuls e
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If IH = 0

J.f IH = 1

go to new input reading

set: AISPZ = AISPY

AISPY = AISPX

AISPX = AISP

and go to step 83

AMRWZ = AMRWY

AMRWY = AMRWX

AMRWX = AMRW

If II = 0 go to step 84

If II = 1 skip to step 86

AMRW = AMRW + AMRWD

Set PO = PC

II = 1 after second calculation loop and return to step 3

tang --

AISPX - AISPY

AMRWX-AMRWY

If IJ = 0 go to step 88

If IJ - 1 skip to step 93

If tan _ <__IKI skip to step 90

If tan _ > IK I go to step 89

AMRW =
AMRWY+AMRWX

Z

set PO = PC

and return to step 3

AISPY - AISPX

AMRWY - AMRWX

AISPZ - AISPY

AMRWZ -AMRWY

AISPY - AISPX
m

AMRWY - AMRWX

AMRWZ - AMRWX
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90. Store Maximum Values for Constant Chamber Pressure

91. New Mixture Ratio to Check on the Obtained Maximum Specific Impulse

Value K = 0.001

92.

93. Test: Maximum Specific Impulse is Obtained

Maximum Specific Impulse is not Within the Required Tolerance

94. Repeat Iteration Using the Mixture Ratio Calculated in Step 91

95. Print the Maximum Values Stored in Step 90

96. Initialize

97. Test: Determine the derivation of the loaded mixture ratio from the

one for maximum specific impulse during the first calculation

loop

Consecutive Passes

98. Calculate the Deviation of the Original Loaded Mixture Ratio from

the One for Maximum Specific Impulse at Loaded Chamber Pressure.

Sign is Important for Step 101
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AISPM = AISP

AMRWM = AMRW

PCM = PC

AMRW = AMRWM +
tan

.K

Set IJ = 1 PO = PC and return to step 3

If tan _ changes sign and

If AISPM > AISP go to step 95

If tan _ does not change signs or

If AISPM <_ AISP go to step 94

Set IJ = 0 PO = PC and return to step 89

PRINT [ maximum values for constant chamber pressure]

Set II = 0

IJ =0

If IK = 0 go to step 98

If IK = 1 skip to step 100

PERCT=
AMRWM - AMRWL

AMRWM
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99. Set

I00. Test: If IL = 0

TfIL= 1

no further calculation for desired thrust level is

considered

calculation for a desired thrust level deviating in

mixture ratio by PERCT from the one for maximum

specific impulse

101. Calculate Mixture Ratio Which Deviates by PERCT from the One

for Maximum Specific Impulse at Presently Considered Chamber

Pressure

10Z. Set Switch to Avoid Maximum Specific Impulse Calculation for the

Following Calculation Pass

103. Test: Desired thrust level has been obtained

K= 0.001

Desired thrust level has not been obtained

104. Test: First calculation loop

Consecutive passes

105. Set
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IK= 1

If IL = 0 go to new input reading

4

If IL = I go to step I01

AMRW = AMRWM - AMRWM" PERCT

Set IG = 1

PO = PC

and return to step 3

If II FTRAI<KFL-

set IG = 0

IK=0

IM-0

PRINT

and go to new input reading

If II FTRA IFL >K

go to step 104

If IM = 0 go to step 105

If IM = 1 skip to step 108

Set: PX = PC

FX = FTRA
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106. Calculate New Combustion Chamber End Stagnation Pressure

{First Calculation Loop}

107. Set

108. Set

109. Calculate New Combustion Chamber ]End Stagnation Pressure

{Consecutive Passes}

110. Set

III. Test: If maximum specific impulse values are considered set IG = 0

If constant mixture ratio is considered set IG = 1
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FL
PC = PC ,--FTRA

PO = PC

IIVI = 1

and skip to step IIi

PY =PX FY = FX

PX = PC FX = I_TRA

PC =PX+
PX - PY

FX - FY
•(FL - FX)

PO = PC

If IH = 1

If IN =0

set IG = 0

set IG = 1

and return to step 3

and return to step 3
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APPENDIX H

ENGINEERING FLOW CHART

FOR THE

CALCULATION PROGRAM

The symbol in each box refers to the

proper equationor test in Appendix G
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FLOW DIAGRAM0

i IN]

3 I A_

4 I A_

• I

OC, OF, OH, OHE,

5 ON, Oe, OU, OX.

OY. OZ

? i A_

01

9 [ EQ

10 I :

'-I

_ws i

lz

13

14

Simuitane_m

16 Eq_Uo_ Solvln s for
Pi. T, A

CNS = i=_l CNi

2e

llO

CNSMCP = _ CN i Z0

i=l

, ,
Set S_iteh for ]

29 FROZ 23
or SHIFT

or Combination

Z5 Eq_ti_ 31 D_

Solving for DPP i

I

I ..........i i iZ6 Eq_tlon

Solving[ for DTP i 3Z C P

"_ "f i
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F GENERAL COMBUSTION PROGRAM

Return to

Step 11

I " 1
po I-_ _--] I I

L__-"__J

vb +

80

Go to N_

_ Return to

m
Step I

I....................IAISPY. AISPX AMRWY = AMRWX

AL_PX i AISP AMRWX. AMRW

Return to

L Step 11
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